2023
2248011
2023
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Wyrzykowska E, Swirog M. Influence of protein corona on cytotoxicity of metal oxide nanoparticles against human keratinocyte cell line (HaCaT) [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297121 Cite
1.
Wyrzykowska E, Swirog M. Identification of factors determining the process of aggregation/agglomeration of metal oxide nanoparticles in a biological medium [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297079 Cite
1.
Wyrzykowska E, Swirog M. The influence of the properties of inorganic solvents on the hydrodynamic diameter of TiO2 nanoparticles [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297068 Cite
1.
Mikolajczyk A, Sizochenko N, Wyrzykowska E, Swirog M. Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells obtained from Chinese hamster ovary (CHO-K1 cell line) for hybrid TiO2-based nanomaterials [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297048 Cite
1.
Mikolajczyk A, Sizochenko N, Wyrzykowska E, Swirog M. Photodegradation of phenol (τOH) by TiO2-based nanophotocatalysts determined in line with the SAPNet methodology [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297022 Cite
1.
Lyubartsev A, Brandt E, Saeedimasine M, Roja Rahmani. Adsorption free energies and potentials of mean-force for interactions between amino acids, lipid fragments, and nanoparticles [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8297848 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of Fe3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7990086 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7990214 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7990251 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7990302 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of CeO2/Co3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7989699 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized ZrO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7965537 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7986673 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7966355 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized AlOOH nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7966245 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7966166 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7966134 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7965603 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7965446 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7941567 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 D540 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7961318 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized CeO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7941462 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7941248 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Fe2O3 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7941002 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7940770 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7940539 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7940272 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized ZnO nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from:
https://zenodo.org/record/7940162 Cite
1.
Giudice GD, Greco D. Data & code repository for the article “An ancestral molecular response to nanomaterial particulates.” 2023 Feb 24 [cited 2023 Nov 22]; Available from:
https://zenodo.org/record/7674574 Cite
1.
Furxhi I, Bengalli R, Motta G, Mantecca P, Kose O, Carriere M, et al. Data-Driven Quantitative Intrinsic Hazard Criteria for Nanoproduct Development in a Safe-by-Design Paradigm: A Case Study of Silver Nanoforms. ACS Appl Nano Mater [Internet]. 2023 Feb 16 [cited 2023 Feb 26];acsanm.3c00173. Available from:
https://pubs.acs.org/doi/10.1021/acsanm.3c00173 Cite
1.
Ammar A. RDF version of the supplementary data from Shin, Hyun Kil and Seo et al. Meta-analysis of Daphnia magna nanotoxicity experiments in accordance with test guidelines. Environ. Sci.: Nano (2018) [Internet]. Zenodo; 2023 [cited 2023 Feb 7]. Available from:
https://zenodo.org/record/7602354 Cite
1.
Furxhi I, Willighagen E, Evelo C, Costa A, Gardini D, Ammar A. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability. NanoImpact [Internet]. 2023 [cited 2023 Jul 23];31:100475. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452074823000265 Cite
1.
Periklos Tsiros, Haralambos Sarimveis. Dataset underpinning the development of a PBK model for inhalation of TiO2 NPs in rats [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8322777 Cite
1.
Karatzas P, Melagraki G, Antreas Afantitis, Laura-Jayne A. Ellis, Lynch I, Dimitra-Danai Varsou, et al. Images of daphnids (control and exposed to NMs) over multiple generations, scored by experts as toxic or non-toxic and the resulting deepDaph predictions [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8321246 Cite
1.
Cheimarios N, Jensen ACØ, Jensen KA, Tsoumanis A, Lynch I, Antreas Afantitis. Occupational exposure dataset for TiO2, carbon black and TiO2 and Ag;X [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8321185 Cite
1.
Korrapolu RN, Antreas Afantitis, Lynch I. Curated dataset on protein’s properties and post-translational modification protein properties [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/8314626 Cite
1.
Varsou DD, Tsoumanis A, Papadiamantis AG, Melagraki G, Afantitis A. Isalos Predictive Analytics Platform: Cheminformatics, Nanoinformatics, and Data Mining Applications. In: Hong H, editor. Machine Learning and Deep Learning in Computational Toxicology [Internet]. Cham: Springer International Publishing; 2023 [cited 2023 Feb 11]. p. 223–42. Available from:
https://link.springer.com/10.1007/978-3-031-20730-3_9 Cite
2022
2248011
2022
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Furxhi I. Extracting interpretable rules with Bayesian Networks. A case study of intrinsic human hazardous properties of silver nanoforms for the Safety Dimension of Safe and Sustainable by design paradigm. [Internet]. Zenodo; 2022 [cited 2023 Feb 26]. Available from:
https://zenodo.org/record/7335039 Cite
1.
Saarimäki LA, Fratello M, Pavel A, Korpilähde S, Leppänen J, Serra A, et al. A Curated Gene and Biological System Annotation of Adverse Outcome Pathways Related to Human Health [Internet]. Zenodo; 2022 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/7980953 Cite
1.
Stoliński F, Rybińska-Fryca A, Gromelski M, Mikolajczyk A, Puzyn T. NanoMixHamster: a web-based tool for predicting cytotoxicity of TiO
2 -based multicomponent nanomaterials toward Chinese hamster ovary (CHO-K1) cells. Nanotoxicology [Internet]. 2022 Jun 17 [cited 2022 Jun 21];1–14. Available from:
https://www.tandfonline.com/doi/full/10.1080/17435390.2022.2080609 Cite
1.
Punz, Benjamin, Johnson, Litty, Himly, Martin. Raw data of multiplex assay on cyto-/chemokine secretion from human monocyte-derived dendritic cells [Internet]. Zenodo; 2022 [cited 2022 Sep 18]. Available from:
https://zenodo.org/record/6473305 Cite
1.
Traas L, Serratosa F, Álvarez S, Van Someren E, Shandilya N, Jeliazkova N, et al. D1.2. SbD4Nano web based repository on Safe-by-Design approaches [Internet]. Zenodo; 2022 Mar [cited 2023 Jul 23]. Available from:
https://zenodo.org/record/6371471 Cite
1.
Boyles M, Murphy F, Mueller W, Wohlleben W, Jacobsen NR, Braakhuis H, et al. Development of a standard operating procedure for the DCFH
2 -DA acellular assessment of reactive oxygen species produced by nanomaterials. Toxicology Mechanisms and Methods [Internet]. 2022 Jan 28 [cited 2022 Feb 24];1–14. Available from:
https://www.tandfonline.com/doi/full/10.1080/15376516.2022.2029656 Cite
1.
Nederstigt TAP, Peijnenburg WJGM, Bleeker EAJ, Vijver MG. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight. Regulatory Toxicology and Pharmacology [Internet]. 2022 [cited 2022 Mar 22];131:105156. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0273230022000435 Cite
1.
Martinez DST, Ellis LJA, Da Silva GH, Petry R, Medeiros AMZ, Davoudi HH, et al. Daphnia magna and mixture toxicity with nanomaterials – Current status and perspectives in data-driven risk prediction. Nano Today [Internet]. 2022 [cited 2022 Feb 19];43:101430. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1748013222000573 Cite
2021
2248011
2021
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Ammar A. RDF version of the data from Anastasios G. et al. Computational enrichment of physicochemical data for the development of a zeta-potential read-across predictive model with Isalos Analytics Platform. NanoImpact (2021). [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from:
https://zenodo.org/record/5744082 Cite
1.
Ammar A. RDF version of the data from Saarimaki et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials (Version 1.0.0) [Zebodo Dataset] (2020) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from:
https://zenodo.org/record/5744003 Cite
1.
Ammar A. RDF version of the data from Hagar I. Labouta et al. Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature. NanoImpact (2019) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from:
https://zenodo.org/record/5744302 Cite
1.
Ammar A. RDF version of the data from Anastasios G. Papadiamantis et al. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform (2020) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from:
https://zenodo.org/record/5743788 Cite
1.
Robinson RLM, Sarimveis H, Doganis P, Jia X, Kotzabasaki M, Gousiadou C, et al. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. Beilstein J Nanotechnol [Internet]. 2021 Nov 29 [cited 2022 Jan 4];12:1297–325. Available from:
https://www.beilstein-journals.org/bjnano/articles/12/97 Cite
1.
Papadopoulou D, Drakopoulos A, Lagarias P, Melagraki G, Kollias G, Afantitis A. In Silico Identification and Evaluation of Natural Products as Potential Tumor Necrosis Factor Function Inhibitors Using Advanced Enalos Asclepios KNIME Nodes. IJMS [Internet]. 2021 Sep 23 [cited 2021 Sep 24];22(19):10220. Available from:
https://www.mdpi.com/1422-0067/22/19/10220 Cite
1.
Winckers LA, Evelo CT, Willighagen EL, Kutmon M. Investigating the Molecular Processes Behind the Cell-Specific Toxicity Response to Titanium Dioxide Nanobelts. IJMS [Internet]. 2021 Aug 30 [cited 2021 Aug 31];22(17):9432. Available from:
https://www.mdpi.com/1422-0067/22/17/9432 Cite
1.
Guo Z, Chakraborty S, Monikh FA, Varsou D, Chetwynd AJ, Afantitis A, et al. Surface Functionalization of Graphene‐Based Materials: Biological Behavior, Toxicology, and Safe‐By‐Design Aspects. Advanced Biology [Internet]. 2021 Jul 20 [cited 2021 Jul 22];2100637. Available from:
https://onlinelibrary.wiley.com/doi/10.1002/adbi.202100637 Cite
1.
Ammar A. RDF version of the data from Choi, JS. et al. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources (2018) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from:
https://zenodo.org/record/5743204 Cite
1.
Radnik, Jörg. BAM reference data: XPS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) [Internet]. Zenodo; 2021 [cited 2021 Oct 28]. Available from:
https://zenodo.org/record/4986068 Cite
1.
Jeliazkova, Nina, Apostolova, Margarita D., Andreoli, Cristina, Barone, Flavia, Barrick, Andrew, Battistelli, Chiara, et al. NanoReg2 - eNanoMapper database [Internet]. Zenodo; 2021 [cited 2021 Oct 28]. Available from:
https://zenodo.org/record/4713745 Cite
1.
Lynch I, Afantitis A, Greco D, Dusinska M, Banares MA, Melagraki G. Editorial for the Special Issue From Nanoinformatics to Nanomaterials Risk Assessment and Governance. Nanomaterials [Internet]. 2021 Jan 7 [cited 2021 Feb 12];11(1):121. Available from:
https://www.mdpi.com/2079-4991/11/1/121 Cite
1.
Ruggiero E, Santizo KY, Persson M, Delpivo C, Wohlleben W. Food contact of paper and plastic products containing SiO2, Cu-Phthalocyanine, Fe2O3, CaCO3: Ranking factors that control the similarity of form and rate of release. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];100372. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452074821000811 Cite
1.
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data [Internet]. 2021 [cited 2021 Feb 12];8(1):49. Available from:
http://www.nature.com/articles/s41597-021-00808-y Cite
1.
Bossa C, Andreoli C, Bakker M, Barone F, De Angelis I, Jeliazkova N, et al. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data. Computational Toxicology [Internet]. 2021 [cited 2021 Oct 28];20:100190. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2468111321000384 Cite
1.
Basei G, Zabeo A, Rasmussen K, Tsiliki G, Hristozov D. A Weight of Evidence approach to classify nanomaterials according to the EU Classification, Labelling and Packaging Regulation criteria. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];24:100359. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452074821000689 Cite
1.
Keller JG, Persson M, Müller P, Ma-Hock L, Werle K, Arts J, et al. Variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];23:100341. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452074821000501 Cite
1.
Papadiamantis AG, Afantitis A, Tsoumanis A, Valsami-Jones E, Lynch I, Melagraki G. Computational enrichment of physicochemical data for the development of a ζ-potential read-across predictive model with Isalos Analytics Platform. NanoImpact [Internet]. 2021 [cited 2021 Mar 31];22:100308. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2452074821000173 Cite
1.
Rouse I, Power D, Brandt EG, Schneemilch M, Kotsis K, Quirke N, et al. First principles characterisation of bio–nano interface. Phys Chem Chem Phys [Internet]. 2021 [cited 2021 Jun 10];10.1039.D1CP01116B. Available from:
http://xlink.rsc.org/?DOI=D1CP01116B Cite
2020
2248011
2020
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Trinh TX, Jongwoon Kim. Status quo in data availability and predictive models of nano-mixture toxicity [Internet]. Zenodo; 2020 [cited 2022 Sep 18]. Available from:
https://zenodo.org/record/4421969 Cite
1.
Lynch I, Afantitis A, Exner T, Himly M, Lobaskin V, Doganis P, et al. Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies? Nanomaterials [Internet]. 2020 Dec 11 [cited 2020 Dec 15];10(12):2493. Available from:
https://www.mdpi.com/2079-4991/10/12/2493 Cite
1.
Ammar A, Bonaretti S, Winckers L, Quik J, Bakker M, Maier D, et al. A Semi-Automated Workflow for FAIR Maturity Indicators in the Life Sciences. Nanomaterials [Internet]. 2020 Oct 20 [cited 2020 Oct 21];10(10):2068. Available from:
https://www.mdpi.com/2079-4991/10/10/2068 Cite
1.
Papadiamantis AG, Klaessig FC, Exner TE, Hofer S, Hofstaetter N, Himly M, et al. Metadata Stewardship in Nanosafety Research: Community-Driven Organisation of Metadata Schemas to Support FAIR Nanoscience Data. Nanomaterials [Internet]. 2020 Oct 15 [cited 2020 Oct 21];10(10):2033. Available from:
https://www.mdpi.com/2079-4991/10/10/2033 Cite
1.
Papadiamantis AG, Jänes J, Voyiatzis E, Sikk L, Burk J, Burk P, et al. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform. Nanomaterials [Internet]. 2020 Oct 13 [cited 2020 Oct 21];10(10):2017. Available from:
https://www.mdpi.com/2079-4991/10/10/2017 Cite
1.
Alsharif SA, Power D, Rouse I, Lobaskin V. In Silico Prediction of Protein Adsorption Energy on Titanium Dioxide and Gold Nanoparticles. Nanomaterials [Internet]. 2020 Oct 4 [cited 2020 Oct 8];10(10):1967. Available from:
https://www.mdpi.com/2079-4991/10/10/1967 Cite
1.
Kochev N, Jeliazkova N, Paskaleva V, Tancheva G, Iliev L, Ritchie P, et al. Your Spreadsheets Can Be FAIR: A Tool and FAIRification Workflow for the eNanoMapper Database. Nanomaterials [Internet]. 2020 Sep 24 [cited 2021 Feb 19];10(10):1908. Available from:
https://www.mdpi.com/2079-4991/10/10/1908 Cite
1.
Svendsen C, Walker LA, Matzke M, Lahive E, Harrison S, Crossley A, et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat Nanotechnol [Internet]. 2020 Aug 17 [cited 2020 Aug 17]; Available from:
http://www.nature.com/articles/s41565-020-0742-1 Cite
1.
Saarimaki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials [Internet]. Zenodo; 2020 [cited 2023 Nov 22]. Available from:
https://zenodo.org/record/6425445 Cite
1.
Saarimaki, Laura Aliisa, Federico, Antonio, Lynch, Iseult, Papadiamantis, Anastasios G., Tsoumanis, Andreas, Melagraki, Georgia, et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials [Internet]. Zenodo; 2020 [cited 2021 Feb 8]. Available from:
https://zenodo.org/record/4146981 Cite
1.
Federico A, Serra A, Ha MK, Kohonen P, Choi JS, Liampa I, et al. Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data. Nanomaterials [Internet]. 2020 May [cited 2020 May 13];10(5):903. Available from:
https://www.mdpi.com/2079-4991/10/5/903 Cite
1.
Ellis LJA, Valsami-Jones E, Lynch I. Exposure medium and particle ageing moderate the toxicological effects of nanomaterials to Daphnia magna over multiple generations: a case for standard test review? Environ Sci: Nano [Internet]. 2020 Apr 17 [cited 2020 May 13];7(4):1136–49. Available from:
https://pubs.rsc.org/en/content/articlelanding/2020/en/d0en00049c Cite
1.
Himly M, Geppert M, Hofer S, Hofstätter N, Horejs‐Höck J, Duschl A. When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. Small [Internet]. 2020 Apr 2 [cited 2020 May 13];n/a(n/a):1907483. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201907483 Cite
1.
Serra A, Fratello M, Cattelani L, Liampa I, Melagraki G, Kohonen P, et al. Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials [Internet]. 2020 Apr [cited 2020 May 13];10(4):708. Available from:
https://www.mdpi.com/2079-4991/10/4/708 Cite
1.
Kinaret PAS, Serra A, Federico A, Kohonen P, Nymark P, Liampa I, et al. Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. Nanomaterials [Internet]. 2020 Apr [cited 2020 May 13];10(4):750. Available from:
https://www.mdpi.com/2079-4991/10/4/750 Cite
1.
Elje E, Mariussen E, Moriones OH, Bastús NG, Puntes V, Kohl Y, et al. Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials [Internet]. 2020 Mar 18 [cited 2020 Jul 8];10(3):545. Available from:
https://www.mdpi.com/2079-4991/10/3/545 Cite
1.
Varsou D, Afantitis A, Tsoumanis A, Papadiamantis A, Valsami‐Jones E, Lynch I, et al. Zeta‐Potential Read‐Across Model Utilizing Nanodescriptors Extracted via the NanoXtract Image Analysis Tool Available on the Enalos Nanoinformatics Cloud Platform. Small [Internet]. 2020 Mar 16 [cited 2020 Mar 19];1906588. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201906588 Cite
1.
Horsch MT, Niethammer C, Boccardo G, Carbone P, Chiacchiera S, Chiricotto M, et al. Semantic Interoperability and Characterization of Data Provenance in Computational Molecular Engineering. J Chem Eng Data [Internet]. 2020 Mar 12 [cited 2020 May 13];65(3):1313–29. Available from:
https://doi.org/10.1021/acs.jced.9b00739 Cite
1.
Ha MK, Kwon SJ, Choi JS, Nguyen NT, Song J, Lee Y, et al. Mass Cytometry and Single-Cell RNA-seq Profiling of the Heterogeneity in Human Peripheral Blood Mononuclear Cells Interacting with Silver Nanoparticles. Small [Internet]. 2020 Mar 12 [cited 2020 May 13];n/a(n/a):1907674. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201907674 Cite
1.
Xenaki V, Costea DE, Marthinussen MC, Cimpan MR, Åstrøm AN. Use of nanomaterials in dentistry: covariates of risk and benefit perceptions among dentists and dental hygienists in Norway. Acta Odontologica Scandinavica [Internet]. 2020 Feb 17 [cited 2020 Jul 8];78(2):152–60. Available from:
https://www.tandfonline.com/doi/full/10.1080/00016357.2019.1668055 Cite
1.
Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D. Nature Communications [Internet]. 2020 Jan 24 [cited 2020 May 13];11(1):1–14. Available from:
https://www.nature.com/articles/s41467-019-14224-9 Cite
1.
Sarimveis H, Liampa I, Tsiros P, Doganis P, Karatzas P, Varsou DD, et al. D6.1 - A workflow and checklist for experimental design and informatics workflow for risk assessment for use in WP9. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603100 Cite
1.
Doganis P, Sarimveis H, Valsamis A, Afantitis A, Melagraki G, Varsou DD, et al. D5.3. - First raw data processing and knowledge extraction tools integrated into KB and first theoretical descriptor calculation services available. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603051 Cite
1.
Hardy B, Lynch I, Papadiamantis A, Alfaro-Serrano. D10.3 - Initial version of NanoCommons Sustainability Plan. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603179 Cite
1.
Papadiamantis A, Exner T, Sarimveis H, Lobaskin V. D5.5 - A workflow and checklist of key information needed from modelling tool owners to facilitate integration into KB. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603088 Cite
1.
Sarimveis H, Doganis P, Karatzas P, Varsou DD, Afantitis A. D5.4 - First predictive nanoQSAR models integrated into NanoCommons KnowledgeBase. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603066 Cite
1.
Alfaro B, Falk A, Exner T, Papadiamantis A, Lynch I. D10.2 - Interactions Needs and Goals of Nano Safety Projects and Programs. 2020 Jan 9 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3603151 Cite
1.
Meier D, Stambolic I, Farcal L, Exner T, Papadiamantis A, Lynch I, et al. D4.4 - First version of data warehouse and collaborative knowledge infrastructure. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601626 Cite
1.
Walker L. D2.2 - 1st set of Stakeholder Workshops and Report on Stakeholder feedback on the usability of NanoCommons portal and tools. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601604 Cite
1.
Doganis P, Sarimveis H, Karatzas P, Meier D, Lynch I. D5.2 - First big data (omics) analysis and mining tools integrated into KnowledgeBase. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601649 Cite
1.
Papadiamantis A, Walker L. D2.1 - 1st Annual conference and nano-exploitation day, stakeholder workshop and User call. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601569 Cite
1.
Exner, Thomas, Papadiamantis, Anastasios, Bonaretti, Serena, Willighagen, Egon. D4.3 - Initial NanoCommons Ontology. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601620 Cite
1.
Exner T, Farcal L, Papadiamantis A, Lynch I, Lobaskin V, Doganis P, et al. D5.1 - Initial Knowledge Infrastructure Functionalities and Services Implemented. 2020 Jan 8 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/3601639 Cite
1.
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García‐Bilbao A, et al. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small [Internet]. 2020 Jan 8 [cited 2020 Jan 9];1904749. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201904749 Cite
1.
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, et al. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal [Internet]. 2020 Jan 1 [cited 2020 May 13];18:583–602. Available from:
http://www.sciencedirect.com/science/article/pii/S2001037019305112 Cite
1.
Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure–activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale [Internet]. 2020 [cited 2022 Mar 25];12(40):20669–76. Available from:
http://xlink.rsc.org/?DOI=D0NR05220E Cite
1.
Comandella D, Gottardo S, Rio-Echevarria IM, Rauscher H. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability. Nanoscale [Internet]. 2020 [cited 2020 Mar 4];12(7):4695–708. Available from:
http://xlink.rsc.org/?DOI=C9NR08323E Cite
2019
2248011
2019
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Afantitis A. Combinatorial Chemistry & High Throughput Screening. 2019 [cited 2020 May 13]. Nanoinformatics: Artificial Intelligence and Nanotechnology in the New Decade. Available from:
http://www.eurekaselect.com/180227/article Cite
1.
Zhernovkov V, Santra T, Cassidy H, Rukhlenko O, Matallanas D, Krstic A, et al. An Integrative Computational Approach for a Prioritization of Key Transcription Regulators Associated With Nanomaterial-Induced Toxicity. Toxicol Sci [Internet]. 2019 Oct 1 [cited 2020 May 13];171(2):303–14. Available from:
https://academic.oup.com/toxsci/article/171/2/303/5528260 Cite
1.
Karlaganis G, Liechti R, Teparkum S, Aungkavattana P, Indaraprasirt R. Nanoregulation along the product life cycle in the EU, Switzerland, Thailand, the USA, and intergovernmental organisations, and its compatibility with WTO law. Toxicological & Environmental Chemistry [Internet]. 2019 Sep 14 [cited 2020 Jul 8];101(7–8):339–68. Available from:
https://www.tandfonline.com/doi/full/10.1080/02772248.2019.1697878 Cite
1.
Lill D, Rukhlenko OS, Mc Elwee AJ, Kashdan E, Timmer J, Kholodenko BN. Mapping connections in signaling networks with ambiguous modularity. npj Systems Biology and Applications [Internet]. 2019 May 23 [cited 2020 May 13];5(1):1–11. Available from:
https://www.nature.com/articles/s41540-019-0096-1 Cite
1.
Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M. Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutation Research/Genetic Toxicology and Environmental Mutagenesis [Internet]. 2019 [cited 2020 Jul 8];843:57–65. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1383571819300543 Cite
1.
Lombi E, Donner E, Dusinska M, Wickson F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat Nanotechnol [Internet]. 2019 [cited 2020 Jul 8];14(6):523–31. Available from:
http://www.nature.com/articles/s41565-019-0460-8 Cite
1.
Nanouptake COST Action CA 15119, Hernández López L, Menéndez Monzonís L, Buj Vicente L, Kaur J, Buschman MH. Report about nanofluid’s health, safety and environmental impact. 2019 [cited 2020 Jul 10]; Available from:
http://repositori.uji.es/xmlui/handle/10234/182629 Cite
1.
Varsou DD, Afantitis A, Tsoumanis A, Melagraki G, Sarimveis H, Valsami-Jones E, et al. A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. Nanoscale Advances [Internet]. 2019 [cited 2018 Nov 25]; Available from:
http://xlink.rsc.org/?DOI=C8NA00142A Cite
2018
2248011
2018
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Martens M, Verbruggen T, Nymark P, Grafström R, Burgoon LD, Aladjov H, et al. Introducing WikiPathways as a Data-Source to Support Adverse Outcome Pathways for Regulatory Risk Assessment of Chemicals and Nanomaterials. Frontiers in Genetics [Internet]. 2018 Dec 21 [cited 2019 Mar 10];9. Available from:
https://www.frontiersin.org/article/10.3389/fgene.2018.00661/full Cite
1.
Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, et al. Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Systems [Internet]. 2018 Aug 22 [cited 2020 May 13];7(2):161-179.e14. Available from:
http://www.sciencedirect.com/science/article/pii/S2405471218302424 Cite
1.
Papadiamantis A, Farcal L, Willighagen E, Lynch I, Exner T. D10.1 Initial Draft Of Data Management Plan (Open Data Pilot). 2018 Jul 28 [cited 2022 Jun 25]; Available from:
https://zenodo.org/record/1479557 Cite
1.
Ghezzi P, Floridi L, Boraschi D, Cuadrado A, Manda G, Levic S, et al. Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. Antioxidants & Redox Signaling [Internet]. 2018 Mar 20 [cited 2018 Oct 30];28(9):852–72. Available from:
http://www.liebertpub.com/doi/10.1089/ars.2017.7147 Cite
1.
Amorim MJB, Lin S, Schlich K, Navas JM, Brunelli A, Neubauer N, et al. Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Technology [Internet]. 2018 Feb 6 [cited 2018 Oct 30];52(3):1514–24. Available from:
http://pubs.acs.org/doi/10.1021/acs.est.7b04122 Cite
1.
Pantano D, Neubauer N, Navratilova J, Scifo L, Civardi C, Stone V, et al. Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. Environmental Science & Technology [Internet]. 2018 Feb 6 [cited 2018 Oct 30];52(3):1128–38. Available from:
http://pubs.acs.org/doi/10.1021/acs.est.7b04130 Cite
1.
Ángela Dávila-Grana, Lara Diego-González, África González-Fernández, Rosana Simón-Vázquez. Synergistic Effect of Metal Oxide Nanoparticles on Cell Viability and Activation of MAP Kinases and NFκB. International Journal of Molecular Sciences [Internet]. 2018 Jan 15 [cited 2018 Oct 30];19(1):246. Available from:
http://www.mdpi.com/1422-0067/19/1/246 Cite
1.
Louro H. Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions. In: Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA, editors. Cellular and Molecular Toxicology of Nanoparticles [Internet]. Cham: Springer International Publishing; 2018 [cited 2018 Oct 30]. p. 123–42. Available from:
http://link.springer.com/10.1007/978-3-319-72041-8_8 Cite
2017
2248011
2017
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
van Pomeren M, Peijnenburg W, Brun N, Vijver M. A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. International Journal of Environmental Research and Public Health [Internet]. 2017 Nov 6 [cited 2018 Oct 30];14(11):1348. Available from:
http://www.mdpi.com/1660-4601/14/11/1348 Cite
1.
Scott‐Fordsmand J, Peijnenburg W, Semenzin E, Nowack B, Hunt N, Hristozov D, et al. Environmental Risk Assessment Strategy for Nanomaterials. International Journal of Environmental Research and Public Health [Internet]. 2017 Oct 19 [cited 2018 Oct 30];14(10):1251. Available from:
http://www.mdpi.com/1660-4601/14/10/1251 Cite
1.
Manayil JC, Osatiashtiani A, Mendoza A, Parlett CMA, Isaacs MA, Durndell LJ, et al. Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio-Oil by Esterification over Silica Sulfonic Acids. ChemSusChem [Internet]. 2017 Sep 11 [cited 2018 Oct 30];10(17):3506–11. Available from:
http://doi.wiley.com/10.1002/cssc.201700959 Cite
1.
van Hest JJHA, Blab GA, Gerritsen HC, de Mello Donega C, Meijerink A. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO
4 Nanoparticles. The Journal of Physical Chemistry C [Internet]. 2017 Sep 7 [cited 2018 Oct 30];121(35):19373–82. Available from:
http://pubs.acs.org/doi/10.1021/acs.jpcc.7b06549 Cite
1.
Chen G, Vijver M, Xiao Y, Peijnenburg W. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. Materials [Internet]. 2017 Aug 31 [cited 2018 Oct 30];10(9):1013. Available from:
http://www.mdpi.com/1996-1944/10/9/1013 Cite
1.
Agosta L, Brandt EG, Lyubartsev AP. Diffusion and reaction pathways of water near fully hydrated TiO
2 surfaces from
ab initio molecular dynamics. The Journal of Chemical Physics [Internet]. 2017 Jul 14 [cited 2018 Oct 30];147(2):024704. Available from:
http://aip.scitation.org/doi/10.1063/1.4991381 Cite
1.
Chen G, Peijnenburg W, Xiao Y, Vijver M. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. International Journal of Molecular Sciences [Internet]. 2017 Jul 12 [cited 2018 Oct 30];18(7):1504. Available from:
http://www.mdpi.com/1422-0067/18/7/1504 Cite
1.
Ye D, Bramini M, Hristov DR, Wan S, Salvati A, Åberg C, et al. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers. Beilstein Journal of Nanotechnology [Internet]. 2017 Jul 7 [cited 2018 Oct 30];8:1396–406. Available from:
http://www.beilstein-journals.org/bjnano/content/8/1/141 Cite
1.
Bengtson S, Knudsen KB, Kyjovska ZO, Berthing T, Skaug V, Levin M, et al. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. Ryffel B, editor. PLOS ONE [Internet]. 2017 Jun 1 [cited 2018 Oct 30];12(6):e0178355. Available from:
https://dx.plos.org/10.1371/journal.pone.0178355 Cite
1.
Zhang M, Sun H, Zhao S, Wang Y, Pu H, Wang Y, et al. Expression of PD-L1 and prognosis in breast cancer: a meta-analysis. Oncotarget [Internet]. 2017 May 9 [cited 2018 Oct 30];8(19). Available from:
http://www.oncotarget.com/fulltext/15532 Cite
1.
Xu MD, Liu SL, Feng YZ, Liu Q, Shen M, Zhi Q, et al. Genomic characteristics of pancreatic squamous cell carcinoma, an investigation by using high throughput sequencing after in-solution hybrid capture. Oncotarget [Internet]. 2017 Feb 28 [cited 2018 Oct 30];8(9). Available from:
http://www.oncotarget.com/fulltext/14678 Cite
1.
Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H, et al. Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution. Sensors [Internet]. 2017 Jan 27 [cited 2018 Oct 30];17(2):244. Available from:
http://www.mdpi.com/1424-8220/17/2/244 Cite
1.
da Luz CM, Boyles MSP, Falagan-Lotsch P, Pereira MR, Tutumi HR, de Oliveira Santos E, et al. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. Journal of Nanobiotechnology [Internet]. 2017 [cited 2018 Oct 30];15(1). Available from:
http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0238-1 Cite
1.
Kumar A, Terakosolphan W, Hassoun M, Vandera KK, Novicky A, Harvey R, et al. A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition. Pharmaceutical Research [Internet]. 2017 [cited 2018 Oct 30];34(12):2454–65. Available from:
http://link.springer.com/10.1007/s11095-017-2169-4 Cite
1.
Degasperi A, Fey D, Kholodenko BN. Performance of objective functions and optimisation procedures for parameter estimation in system biology models. npj Systems Biology and Applications [Internet]. 2017 [cited 2018 Oct 30];3(1). Available from:
http://www.nature.com/articles/s41540-017-0023-2 Cite
1.
Gonçalves MFM, Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Scientific Reports [Internet]. 2017 [cited 2018 Oct 30];7(1). Available from:
http://www.nature.com/articles/s41598-017-01507-8 Cite
1.
Rothbauer M, Patel N, Gondola H, Siwetz M, Huppertz B, Ertl P. A comparative study of five physiological key parameters between four different human trophoblast-derived cell lines. Scientific Reports [Internet]. 2017 [cited 2018 Oct 30];7(1). Available from:
http://www.nature.com/articles/s41598-017-06364-z Cite
1.
Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, et al. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and Chemical Toxicology [Internet]. 2017 [cited 2018 Oct 30];109:797–811. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0278691517304817 Cite
1.
Tsiliki G, Nymark P, Kohonen P, Grafström R, Sarimveis H. Enriching Nanomaterials Omics Data: An Integration Technique to Generate Biological Descriptors. Small Methods [Internet]. 2017 [cited 2018 Oct 30];1(11):1700139. Available from:
http://doi.wiley.com/10.1002/smtd.201700139 Cite
1.
Glomstad B, Sørensen L, Liu J, Shen M, Zindler F, Jenssen BM, et al. Evaluation of methods to determine adsorption of polycyclic aromatic hydrocarbons to dispersed carbon nanotubes. Environmental Science and Pollution Research [Internet]. 2017 [cited 2018 Oct 30];24(29):23015–25. Available from:
http://link.springer.com/10.1007/s11356-017-9953-x Cite
1.
Weigel S, Peters R, Loeschner K, Grombe R, Linsinger TPJ. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Analytical and Bioanalytical Chemistry [Internet]. 2017 [cited 2018 Oct 30];409(20):4839–48. Available from:
http://link.springer.com/10.1007/s00216-017-0427-2 Cite
1.
Moche H, Paget V, Chevalier D, Lorge E, Claude N, Girard HA, et al. Carboxylated nanodiamonds can be used as negative reference in
in vitro nanogenotoxicity studies: Nanodiamonds as negative reference in nanogenotoxicity studies. Journal of Applied Toxicology [Internet]. 2017 [cited 2018 Oct 30];37(8):954–61. Available from:
http://doi.wiley.com/10.1002/jat.3443 Cite
1.
Iglesias T, Dusinska M, El Yamani N, Irache JM, Azqueta A, López de Cerain A. In vitro evaluation of the genotoxicity of poly(anhydride) nanoparticles designed for oral drug delivery. International Journal of Pharmaceutics [Internet]. 2017 [cited 2018 Oct 30];523(1):418–26. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0378517317301928 Cite
1.
Sojka B, Liskova A, Kuricova M, Banski M, Misiewicz J, Dusinska M, et al. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes. Journal of Nanoparticle Research [Internet]. 2017 [cited 2018 Oct 30];19(2). Available from:
http://link.springer.com/10.1007/s11051-017-3779-9 Cite
2016
2248011
2016
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Vilanova O, Mittag JJ, Kelly PM, Milani S, Dawson KA, Rädler JO, et al. Understanding the Kinetics of Protein–Nanoparticle Corona Formation. ACS Nano [Internet]. 2016 Dec 27 [cited 2018 Oct 30];10(12):10842–50. Available from:
http://pubs.acs.org/doi/10.1021/acsnano.6b04858 Cite
1.
Linda Rieswijk JC. Deliverable Report D5.6 User Application For Conformance To Reporting And Curation Standards [Internet]. Zenodo; 2016 Dec [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/345997 Cite
1.
Egon Willighagen MR. Deliverable Report D3.3 Modules And Services For Linking And Integration With Third Party Databases [Internet]. Zenodo; 2016 Dec [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375813 Cite
1.
Nasser F, Davis A, Valsami-Jones E, Lynch I. Shape and Charge of Gold Nanomaterials Influence Survivorship, Oxidative Stress and Moulting of Daphnia magna. Nanomaterials [Internet]. 2016 Nov 25 [cited 2018 Oct 30];6(12):222. Available from:
http://www.mdpi.com/2079-4991/6/12/222 Cite
1.
Nina Jeliazkova NK. Deliverable Report D3.4 Isa-Tab Templates For Common Bioselected Set Of Assays [Internet]. Zenodo; 2016 Nov [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375814 Cite
1.
G. Drakakis CC. Deliverable Raport D4.6 Tools For Generating Qmrf And Qprf Reports [Internet]. Zenodo; 2016 Nov [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375619 Cite
1.
Farcal L, Doganis P, Tsiliki G, Haralambos Sarimveis, Jeliazkova N, Willighagen E, et al. Deliverable Report D5.7 Final report on User Applications [Internet]. Zenodo; 2016 Nov [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/322296 Cite
1.
G. Drakakis CC. Deliverable Raport D4.5 Design Of Experiments And Inter-Laboratory Testing Facilities [Internet]. Zenodo; 2016 Oct [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375616 Cite
1.
Li Y, Italiani P, Casals E, Valkenborg D, Mertens I, Baggerman G, et al. Assessing the Immunosafety of Engineered Nanoparticles with a Novel
in Vitro Model Based on Human Primary Monocytes. ACS Applied Materials & Interfaces [Internet]. 2016 Oct 26 [cited 2018 Oct 30];8(42):28437–47. Available from:
http://pubs.acs.org/doi/10.1021/acsami.6b06278 Cite
1.
Hristozov D, Zabeo A, Alstrup Jensen K, Gottardo S, Isigonis P, Maccalman L, et al. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials. Nanotoxicology [Internet]. 2016 Oct 20 [cited 2018 Oct 30];10(9):1215–28. Available from:
https://www.tandfonline.com/doi/full/10.3109/17435390.2016.1144827 Cite
1.
Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, et al. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology [Internet]. 2016 Sep 13 [cited 2018 Oct 30];10(8):1084–95. Available from:
https://www.tandfonline.com/doi/full/10.3109/17435390.2016.1172678 Cite
1.
Friederike Ehrhart PN. Deliverable Raport D4.4 Mechanism-Ofaction Modelling Tools [Internet]. Zenodo; 2016 Jul [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375613 Cite
1.
Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, et al. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget [Internet]. 2016 Jul 26 [cited 2018 Oct 30];7(30). Available from:
http://www.oncotarget.com/fulltext/9975 Cite
1.
Koli K, Sutinen E, Rönty M, Rantakari P, Fortino V, Pulkkinen V, et al. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine. Ryffel B, editor. PLOS ONE [Internet]. 2016 Jul 18 [cited 2018 Oct 30];11(7):e0159010. Available from:
https://dx.plos.org/10.1371/journal.pone.0159010 Cite
1.
Pilou M, Vaquero-Moralejo C, Jaén M, Lopez De Ipiña Peña J, Neofytou P, Housiadas C. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation. International Journal of Occupational and Environmental Health [Internet]. 2016 Jul 2 [cited 2018 Oct 30];22(3):249–58. Available from:
https://www.tandfonline.com/doi/full/10.1080/10773525.2016.1226535 Cite
1.
Zhang M, Guo H, Zhao S, Wang Y, Yang M, Yu J, et al. Efficacy of epidermal growth factor receptor inhibitors in combination with chemotherapy in advanced non-small cell lung cancer: A meta-analysis of randomized controlled trials. Oncotarget [Internet]. 2016 Jun 28 [cited 2018 Oct 30];7(26). Available from:
http://www.oncotarget.com/fulltext/9503 Cite
1.
Fallahi E, O’Driscoll N, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes [Internet]. 2016 Jun 17 [cited 2018 Oct 30];7(6):28. Available from:
http://www.mdpi.com/2073-4425/7/6/28 Cite
1.
del Pino P, Yang F, Pelaz B, Zhang Q, Kantner K, Hartmann R, et al. Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angewandte Chemie International Edition [Internet]. 2016 Apr 25 [cited 2018 Oct 30];55(18):5483–7. Available from:
http://doi.wiley.com/10.1002/anie.201511733 Cite
1.
Tuomela S, Rautio S, Ahlfors H, Öling V, Salo V, Ullah U, et al. Comparative analysis of human and mouse transcriptomes of Th17 cell priming. Oncotarget [Internet]. 2016 Mar 22 [cited 2018 Oct 30];7(12). Available from:
http://www.oncotarget.com/fulltext/7963 Cite
1.
Mallevre F, Alba C, Milne C, Gillespie S, Fernandes T, Aspray T. Toxicity Testing of Pristine and Aged Silver Nanoparticles in Real Wastewaters Using Bioluminescent Pseudomonas putida. Nanomaterials [Internet]. 2016 Mar 11 [cited 2018 Oct 30];6(3):49. Available from:
http://www.mdpi.com/2079-4991/6/3/49 Cite
1.
Nina Jeliazkova NK. Deliverable Report D3.2 Data Management System With Extended Search Capabilities [Internet]. Zenodo; 2016 Mar [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375639 Cite
1.
Amorim M. The Daunting Challenge of Ensuring Sustainable Development of Nanomaterials. International Journal of Environmental Research and Public Health [Internet]. 2016 Feb 22 [cited 2018 Oct 30];13(2):245. Available from:
http://www.mdpi.com/1660-4601/13/2/245 Cite
1.
Scimeca M, Pietroiusti A, Milano F, Anemona L, Orlandi A, Marsella LT, et al. Elemental analysis of histological specimens: a method to unmask nano asbestos fibers. European Journal of Histochemistry [Internet]. 2016 Feb 1 [cited 2018 Oct 30];60(1). Available from:
http://www.ejh.it/index.php/ejh/article/view/2573 Cite
1.
Bastús NG, Piella J, Puntes V. Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating. Langmuir [Internet]. 2016 Jan 12 [cited 2018 Oct 30];32(1):290–300. Available from:
http://pubs.acs.org/doi/10.1021/acs.langmuir.5b03859 Cite
1.
Zhang M, Dong Y, Liu H, Wang Y, Zhao S, Xuan Q, et al. The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Scientific Reports [Internet]. 2016 [cited 2018 Oct 30];6(1). Available from:
http://www.nature.com/articles/srep37933 Cite
1.
Åberg C, Varela JA, Fitzpatrick LW, Dawson KA. Spatial and Structural Metrics for Living Cells Inspired by Statistical Mechanics. Scientific Reports [Internet]. 2016 [cited 2018 Oct 30];6(1). Available from:
http://www.nature.com/articles/srep34457 Cite
1.
Louro H, Pinhão M, Santos J, Tavares A, Vital N, Silva MJ. Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicology Letters [Internet]. 2016 [cited 2018 Oct 30];262:123–34. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0378427416332507 Cite
1.
Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, et al. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environmental Pollution [Internet]. 2016 [cited 2018 Oct 30];218:870–8. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0269749116307114 Cite
1.
Scherbahn V, Nizamov S, Mirsky VM. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchimica Acta [Internet]. 2016 [cited 2018 Oct 30];183(11):2837–45. Available from:
http://link.springer.com/10.1007/s00604-016-1956-7 Cite
1.
Shen XM, Xia YY, Lian L, Zhou C, Li XL, Han SG, et al. Mean platelet volume provides beneficial diagnostic and prognostic information for patients with resectable gastric cancer. Oncology Letters [Internet]. 2016 [cited 2018 Oct 30];12(4):2501–6. Available from:
https://www.spandidos-publications.com/10.3892/ol.2016.4913 Cite
1.
Jagiello K, Grzonkowska M, Swirog M, Ahmed L, Rasulev B, Avramopoulos A, et al. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. Journal of Nanoparticle Research [Internet]. 2016 [cited 2018 Oct 30];18(9). Available from:
http://link.springer.com/10.1007/s11051-016-3564-1 Cite
1.
Escudero A, Carrillo-Carrión C, Zyuzin MV, Parak WJ. Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry [Internet]. 2016 [cited 2018 Oct 30];374(4). Available from:
http://link.springer.com/10.1007/s41061-016-0049-8 Cite
2015
2248011
2015
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Navratilova J, Praetorius A, Gondikas A, Fabienke W, von der Kammer F, Hofmann T. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health [Internet]. 2015 Dec 10 [cited 2018 Oct 30];12(12):15756–68. Available from:
http://www.mdpi.com/1660-4601/12/12/15020 Cite
1.
Tsiliki G, Munteanu C, Seoane J, Fernandez-Lozano C, Sarimveis H, Willighagen E. Using the RRegrs R package for automating predictive modelling. In: Proceedings of MOL2NET, International Conference on Multidisciplinary Sciences [Internet]. Sciforum.net: MDPI; 2015 [cited 2018 Oct 30]. p. F009. Available from:
http://sciforum.net/conference/MOL2NET-1/paper/3330 Cite
1.
Bos P, Gottardo S, Scott-Fordsmand J, van Tongeren M, Semenzin E, Fernandes T, et al. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health [Internet]. 2015 Nov 27 [cited 2018 Oct 30];12(12):15007–21. Available from:
http://www.mdpi.com/1660-4601/12/12/14961 Cite
1.
Simkó M, Tischler S, Mattsson MO. Pooling and Analysis of Published in Vitro Data: A Proof of Concept Study for the Grouping of Nanoparticles. International Journal of Molecular Sciences [Internet]. 2015 Nov 2 [cited 2018 Oct 30];16(11):26211–36. Available from:
http://www.mdpi.com/1422-0067/16/11/25954 Cite
1.
Oomen A, Bleeker E, Bos P, van Broekhuizen F, Gottardo S, Groenewold M, et al. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health [Internet]. 2015 Oct 26 [cited 2018 Oct 30];12(10):13415–34. Available from:
http://www.mdpi.com/1660-4601/12/10/13415 Cite
1.
Mendes L, Maria V, Scott-Fordsmand J, Amorim M. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). International Journal of Environmental Research and Public Health [Internet]. 2015 Oct 9 [cited 2018 Oct 30];12(10):12530–42. Available from:
http://www.mdpi.com/1660-4601/12/10/12530 Cite
1.
Vogt C, Pernemalm M, Kohonen P, Laurent S, Hultenby K, Vahter M, et al. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages. Bansal V, editor. PLOS ONE [Internet]. 2015 Oct 7 [cited 2018 Oct 30];10(10):e0129008. Available from:
https://dx.plos.org/10.1371/journal.pone.0129008 Cite
1.
Marchese Robinson RL, Cronin MTD, Richarz AN, Rallo R. An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology. Beilstein Journal of Nanotechnology [Internet]. 2015 Oct 5 [cited 2018 Oct 30];6:1978–99. Available from:
http://www.beilstein-journals.org/bjnano/content/6/1/202 Cite
1.
Ribeiro M, Maria V, Scott-Fordsmand J, Amorim M. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. International Journal of Environmental Research and Public Health [Internet]. 2015 Aug 14 [cited 2018 Oct 30];12(8):9589–602. Available from:
http://www.mdpi.com/1660-4601/12/8/9589 Cite
1.
Charalambos Chomenidis PD. Deliverable Raport D4.3 Nqsar Modelling Infrastructure [Internet]. Zenodo; 2015 Jul [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375610 Cite
1.
Nina Jeliazkova NK. Deliverable Report D5.4 User Application For Importing Nanosafety Cluster Data [Internet]. Zenodo; 2015 Jul [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/345994 Cite
1.
Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, et al. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano [Internet]. 2015 Jul 28 [cited 2018 Oct 30];9(7):6996–7008. Available from:
http://pubs.acs.org/doi/10.1021/acsnano.5b01326 Cite
1.
Jeliazkova N, Chomenidis C, Doganis P, Fadeel B, Grafström R, Hardy B, et al. The eNanoMapper database for nanomaterial safety information. Beilstein Journal of Nanotechnology [Internet]. 2015 Jul 27 [cited 2018 Oct 30];6:1609–34. Available from:
http://www.beilstein-journals.org/bjnano/content/6/1/165 Cite
1.
Gomes S, Scott-Fordsmand J, Amorim M. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag. International Journal of Environmental Research and Public Health [Internet]. 2015 Jun 16 [cited 2018 Oct 30];12(6):6858–78. Available from:
http://www.mdpi.com/1660-4601/12/6/6858 Cite
1.
Faddeeva A, Studer RA, Kraaijeveld K, Sie D, Ylstra B, Mariën J, et al. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. von Haeseler A, editor. PLOS ONE [Internet]. 2015 Jun 15 [cited 2018 Oct 30];10(6):e0130600. Available from:
https://dx.plos.org/10.1371/journal.pone.0130600 Cite
1.
Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells. Chin WC, editor. PLOS ONE [Internet]. 2015 Jun 10 [cited 2018 Oct 30];10(6):e0129039. Available from:
https://dx.plos.org/10.1371/journal.pone.0129039 Cite
1.
Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, et al. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy. Zhu D, editor. PLOS ONE [Internet]. 2015 May 21 [cited 2018 Oct 30];10(5):e0127174. Available from:
https://dx.plos.org/10.1371/journal.pone.0127174 Cite
1.
Connolly M, Fernandez-Cruz ML, Quesada-Garcia A, Alte L, Segner H, Navas J. Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes. International Journal of Environmental Research and Public Health [Internet]. 2015 May 20 [cited 2018 Oct 30];12(5):5386–405. Available from:
http://www.mdpi.com/1660-4601/12/5/5386 Cite
1.
Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, et al. Comparative Hazard Identification by a Single Dose Lung Exposure of Zinc Oxide and Silver Nanomaterials in Mice. Ryffel B, editor. PLOS ONE [Internet]. 2015 May 12 [cited 2018 Oct 30];10(5):e0126934. Available from:
https://dx.plos.org/10.1371/journal.pone.0126934 Cite
1.
Philip Doganis GT. Deliverable Raport D4.2 Descriptor Calculation Algorithms And Methods [Internet]. Zenodo; 2015 Apr [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375609 Cite
1.
Markus Hegi BH. Deliverable Report D1.1 Requirements Analysis And Systems Design [Internet]. Zenodo; 2015 Mar [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375623 Cite
1.
E.L. Willighagen BH. Deliverable Report D5.3 User Applications For Importing Nanowiki Data [Internet]. Zenodo; 2015 Jan [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/345979 Cite
1.
Philip Doganis BF. Deliverable Report D3.1 Technical Specification And Initial Implementation Of The Protocol And Data Management Web Services [Internet]. Zenodo; 2015 Jan [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375637 Cite
1.
Philip Doganis GT. Deliverable Raport D4.1 Analysis And Modelling Specifications [Internet]. Zenodo; 2015 Jan [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/346000 Cite
1.
Købler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk CL, et al. Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice. Ceña V, editor. PLOS ONE [Internet]. 2015 Jan 23 [cited 2018 Oct 30];10(1):e0116481. Available from:
https://dx.plos.org/10.1371/journal.pone.0116481 Cite
1.
Wang F, Liu ZY, Xia YY, Zhou C, Shen XM, Li XL, et al. Changes in neutrophil/lymphocyte and platelet/lymphocyte ratios after chemotherapy correlate with chemotherapy response and prediction of prognosis in patients with unresectable gastric cancer. Oncology Letters [Internet]. 2015 [cited 2018 Oct 30];10(6):3411–8. Available from:
https://www.spandidos-publications.com/10.3892/ol.2015.3783 Cite
1.
Hastings J, Jeliazkova N, Owen G, Tsiliki G, Munteanu CR, Steinbeck C, et al. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. Journal of Biomedical Semantics [Internet]. 2015 [cited 2018 Oct 30];6(1). Available from:
http://www.jbiomedsem.com/content/6/1/10 Cite
1.
Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, et al. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an
ex Vivo Human Placental Perfusion Model. Environmental Health Perspectives [Internet]. 2015 [cited 2018 Oct 30];123(12):1280–6. Available from:
https://ehp.niehs.nih.gov/doi/10.1289/ehp.1409271 Cite
1.
Boyles MSP, Kristl T, Andosch A, Zimmermann M, Tran N, Casals E, et al. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology [Internet]. 2015 [cited 2018 Oct 30];13(1). Available from:
http://www.jnanobiotechnology.com/content/13/1/84 Cite
1.
Stoehr LC, Endes C, Radauer-Preiml I, Boyles MSP, Casals E, Balog S, et al. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Particle and Fibre Toxicology [Internet]. 2015 [cited 2018 Oct 30];12(1). Available from:
http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-015-0104-6 Cite
1.
Tsiliki G, Munteanu CR, Seoane JA, Fernandez-Lozano C, Sarimveis H, Willighagen EL. RRegrs: an R package for computer-aided model selection with multiple regression models. Journal of Cheminformatics [Internet]. 2015 [cited 2018 Oct 30];7(1). Available from:
http://www.jcheminf.com/content/7/1/46 Cite
1.
Hristov DR, Rocks L, Kelly PM, Thomas SS, Pitek AS, Verderio P, et al. Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface. Scientific Reports [Internet]. 2015 [cited 2018 Oct 30];5(1). Available from:
http://www.nature.com/articles/srep17040 Cite
1.
Novo M, Lahive E, Díez-Ortiz M, Matzke M, Morgan AJ, Spurgeon DJ, et al. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environmental Pollution [Internet]. 2015 [cited 2018 Oct 30];205:385–93. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0269749115003437 Cite
2014
2248011
2014
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Janna Hastings GO. Deliverable Report D2.2 Ontology Content Types And Existing Community Efforts [Internet]. Zenodo; 2014 Sep [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375634 Cite
1.
Fortino V, Kinaret P, Fyhrquist N, Alenius H, Greco D. A Robust and Accurate Method for Feature Selection and Prioritization from Multi-Class OMICs Data. Arthur J, editor. PLoS ONE [Internet]. 2014 Sep 23 [cited 2018 Oct 30];9(9):e107801. Available from:
http://dx.plos.org/10.1371/journal.pone.0107801 Cite
1.
Anguissola S, Garry D, Salvati A, O’Brien PJ, Dawson KA. High Content Analysis Provides Mechanistic Insights on the Pathways of Toxicity Induced by Amine-Modified Polystyrene Nanoparticles. Hussain S, editor. PLoS ONE [Internet]. 2014 Sep 19 [cited 2018 Oct 30];9(9):e108025. Available from:
http://dx.plos.org/10.1371/journal.pone.0108025 Cite
1.
Izak-Nau E, Kenesei K, Murali K, Voetz M, Eiden S, Puntes VF, et al. Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology [Internet]. 2014 Aug 31 [cited 2018 Oct 30];8(sup1):138–48. Available from:
https://www.tandfonline.com/doi/full/10.3109/17435390.2013.864427 Cite
1.
Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. Quigg A, editor. PLoS ONE [Internet]. 2014 Jul 21 [cited 2018 Oct 30];9(7):e102108. Available from:
https://dx.plos.org/10.1371/journal.pone.0102108 Cite
1.
Janna Hastings EW. Deliverable Report D2.1 Framework And Infrastructure For Ontology Development, Versioning And Dissemination [Internet]. Zenodo; 2014 Jun [cited 2020 Feb 23]. Available from:
https://zenodo.org/record/375633 Cite
1.
Bramini M, Ye D, Hallerbach A, Nic Raghnaill M, Salvati A, Åberg C, et al. Imaging Approach to Mechanistic Study of Nanoparticle Interactions with the Blood–Brain Barrier. ACS Nano [Internet]. 2014 May 27 [cited 2018 Oct 30];8(5):4304–12. Available from:
http://pubs.acs.org/doi/10.1021/nn5018523 Cite
1.
Koivisto A, Palomäki J, Viitanen AK, Siivola K, Koponen I, Yu M, et al. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment. International Journal of Environmental Research and Public Health [Internet]. 2014 May 16 [cited 2018 Oct 30];11(5):5382–402. Available from:
http://www.mdpi.com/1660-4601/11/5/5382 Cite
1.
Mu Q, David CA, Galceran J, Rey-Castro C, Krzemiński Ł, Wallace R, et al. Systematic Investigation of the Physicochemical Factors That Contribute to the Toxicity of ZnO Nanoparticles. Chemical Research in Toxicology [Internet]. 2014 Apr 21 [cited 2018 Oct 30];27(4):558–67. Available from:
http://pubs.acs.org/doi/10.1021/tx4004243 Cite
1.
Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, et al. Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements. Environmental Science & Technology [Internet]. 2014 Apr 15 [cited 2018 Oct 30];48(8):4226–46. Available from:
http://pubs.acs.org/doi/10.1021/es4052999 Cite
1.
Gergs A, Preuss TG, Palmqvist A. Double Trouble at High Density: Cross-Level Test of Resource-Related Adaptive Plasticity and Crowding-Related Fitness. Salice CJ, editor. PLoS ONE [Internet]. 2014 Mar 13 [cited 2018 Oct 30];9(3):e91503. Available from:
https://dx.plos.org/10.1371/journal.pone.0091503 Cite
1.
Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, et al. Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano [Internet]. 2014 Jan 28 [cited 2018 Oct 30];8(1):222–33. Available from:
http://pubs.acs.org/doi/10.1021/nn403256v Cite
1.
Keller J, Wohlleben W, Ma-Hock L, Strauss V, Gröters S, Küttler K, et al. Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Archives of Toxicology [Internet]. 2014 [cited 2018 Oct 30];88(11):2033–59. Available from:
http://link.springer.com/10.1007/s00204-014-1349-9 Cite
1.
Holzwarth U, Bellido E, Dalmiglio M, Kozempel J, Cotogno G, Gibson N. 7Be-recoil radiolabelling of industrially manufactured silica nanoparticles. Journal of Nanoparticle Research [Internet]. 2014 [cited 2018 Oct 30];16(9). Available from:
http://link.springer.com/10.1007/s11051-014-2574-0 Cite
1.
Ucciferri N, Collnot EM, Gaiser BK, Tirella A, Stone V, Domenici C, et al.
In vitro toxicological screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(6):697–708. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2013.831500 Cite
1.
Tripathi SK, Lahesmaa R. Transcriptional and epigenetic regulation of T-helper lineage specification. Immunological Reviews [Internet]. 2014 [cited 2018 Oct 30];261(1):62–83. Available from:
http://doi.wiley.com/10.1111/imr.12204 Cite
1.
Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, et al. Cancer Biology, Toxicology and Alternative Methods Development Go Hand-in-Hand. Basic & Clinical Pharmacology & Toxicology [Internet]. 2014 [cited 2018 Oct 30];115(1):50–8. Available from:
http://doi.wiley.com/10.1111/bcpt.12257 Cite
1.
Boldrin A, Hansen SF, Baun A, Hartmann NIB, Astrup TF. Environmental exposure assessment framework for nanoparticles in solid waste. Journal of Nanoparticle Research [Internet]. 2014 [cited 2018 Oct 30];16(6). Available from:
http://link.springer.com/10.1007/s11051-014-2394-2 Cite
1.
Linsinger TPJ, Peters R, Weigel S. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Analytical and Bioanalytical Chemistry [Internet]. 2014 [cited 2018 Oct 30];406(16):3835–43. Available from:
http://link.springer.com/10.1007/s00216-013-7559-9 Cite
1.
Købler C, Saber AT, Jacobsen NR, Wallin H, Vogel U, Qvortrup K, et al. FIB-SEM imaging of carbon nanotubes in mouse lung tissue. Analytical and Bioanalytical Chemistry [Internet]. 2014 [cited 2018 Oct 30];406(16):3863–73. Available from:
http://link.springer.com/10.1007/s00216-013-7566-x Cite
1.
Misra SK, Nuseibeh S, Dybowska A, Berhanu D, Tetley TD, Valsami-Jones E. Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(4):422–32. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2013.796017 Cite
1.
Janer G, Fernández-Rosas E, Mas del Molino E, González-Gálvez D, Vilar G, López-Iglesias C, et al.
In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(3):279–94. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2013.776123 Cite
1.
Oomen AG, Bos PMJ, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, et al. Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety Cluster Working Group 10. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(3):334–48. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2013.802387 Cite
1.
Buffet PE, Poirier L, Zalouk-Vergnoux A, Lopes C, Amiard JC, Gaudin P, et al. Biochemical and behavioural responses of the marine polychaete Hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): Waterborne and dietary exposure. Chemosphere [Internet]. 2014 [cited 2018 Oct 30];100:63–70. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S004565351400006X Cite
1.
Hristozov DR, Gottardo S, Cinelli M, Isigonis P, Zabeo A, Critto A, et al. Application of a quantitative weight of evidence approach for ranking and prioritising occupational exposure scenarios for titanium dioxide and carbon nanomaterials. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(2):117–31. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2012.760013 Cite
1.
Šebeková K, Dušinská M, Simon Klenovics K, Kollárová R, Boor P, Kebis A, et al. Comprehensive assessment of nephrotoxicity of intravenously administered sodium-oleate-coated ultra-small superparamagnetic iron oxide (USPIO) and titanium dioxide (TiO
2 ) nanoparticles in rats. Nanotoxicology [Internet]. 2014 [cited 2018 Oct 30];8(2):142–57. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2012.763147 Cite
1.
Buffet PE, Zalouk-Vergnoux A, Châtel A, Berthet B, Métais I, Perrein-Ettajani H, et al. A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: The ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Science of The Total Environment [Internet]. 2014 [cited 2018 Oct 30];470–471:1151–9. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0048969713012588 Cite
1.
Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials [Internet]. 2014 [cited 2018 Oct 30];264:98–106. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0304389413008029 Cite
1.
Du F, Meng H, Xu K, Xu Y, Luo P, Luo Y, et al. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (l-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids and Surfaces B: Biointerfaces [Internet]. 2014 [cited 2018 Oct 30];113:230–6. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0927776513005833 Cite
1.
Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Science of The Total Environment [Internet]. 2014 [cited 2018 Oct 30];466–467:232–41. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0048969713007535 Cite
1.
Maleki M, Amani-Tehran M, Latifi M, Mathur S. Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling. Computer Methods and Programs in Biomedicine [Internet]. 2014 [cited 2018 Oct 30];113(1):92–100. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0169260713003027 Cite
1.
Lopes S, Ribeiro F, Wojnarowicz J, Łojkowski W, Jurkschat K, Crossley A, et al. Zinc oxide nanoparticles toxicity to
Daphnia magna : size-dependent effects and dissolution: Effect of ZnO nanoparticles on
Daphnia magna. Environmental Toxicology and Chemistry [Internet]. 2014 [cited 2018 Oct 30];33(1):190–8. Available from:
http://doi.wiley.com/10.1002/etc.2413 Cite
2013
2248011
2013
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Hayashi Y, Miclaus T, Scavenius C, Kwiatkowska K, Sobota A, Engelmann P, et al. Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environmental Science & Technology [Internet]. 2013 Dec 17 [cited 2018 Oct 30];47(24):14367–75. Available from:
http://pubs.acs.org/doi/10.1021/es404132w Cite
1.
Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, et al. Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGF-β/Smad Signaling Pathway. Small [Internet]. 2013 Nov 25 [cited 2018 Oct 30];9(22):3799–811. Available from:
http://doi.wiley.com/10.1002/smll.201300607 Cite
1.
Baweja L, Balamurugan K, Subramanian V, Dhawan A. Hydration Patterns of Graphene-Based Nanomaterials (GBNMs) Play a Major Role in the Stability of a Helical Protein: A Molecular Dynamics Simulation Study. Langmuir [Internet]. 2013 Nov 19 [cited 2018 Oct 30];29(46):14230–8. Available from:
http://pubs.acs.org/doi/10.1021/la4033805 Cite
1.
Yamada S, Schmid S, Larsen T, Hansen O, Boisen A. Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators. Analytical Chemistry [Internet]. 2013 Nov 5 [cited 2018 Oct 30];85(21):10531–5. Available from:
http://pubs.acs.org/doi/10.1021/ac402585e Cite
1.
Turek VA, Elliott LN, Tyler AII, Demetriadou A, Paget J, Cecchini MP, et al. Self-Assembly and Applications of Ultraconcentrated Nanoparticle Solutions. ACS Nano [Internet]. 2013 Oct 22 [cited 2018 Oct 30];7(10):8753–9. Available from:
http://pubs.acs.org/doi/10.1021/nn403131e Cite
1.
Zhen M, Zheng J, Wang Y, Shu C, Gao F, Zou J, et al. Multifunctional Nanoprobe for MRI/Optical Dual-Modality Imaging and Radical Scavenging. Chemistry - A European Journal [Internet]. 2013 Oct 18 [cited 2018 Oct 30];19(43):14675–81. Available from:
http://doi.wiley.com/10.1002/chem.201301601 Cite
1.
Kim JA, Åberg C, de Cárcer G, Malumbres M, Salvati A, Dawson KA. Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest. ACS Nano [Internet]. 2013 Sep 24 [cited 2018 Oct 30];7(9):7483–94. Available from:
http://pubs.acs.org/doi/10.1021/nn403126e Cite
1.
Leonis G, Steinbrecher T, Papadopoulos MG. A Contribution to the Drug Resistance Mechanism of Darunavir, Amprenavir, Indinavir, and Saquinavir Complexes with HIV-1 Protease Due to Flap Mutation I50V: A Systematic MM–PBSA and Thermodynamic Integration Study. Journal of Chemical Information and Modeling [Internet]. 2013 Aug 26 [cited 2018 Oct 30];53(8):2141–53. Available from:
http://pubs.acs.org/doi/10.1021/ci4002102 Cite
1.
Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, et al. Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase. Small [Internet]. 2013 Aug 26 [cited 2018 Oct 30];9(16):2721–9. Available from:
http://doi.wiley.com/10.1002/smll.201202508 Cite
1.
Khan FR, Laycock A, Dybowska A, Larner F, Smith BD, Rainbow PS, et al. Stable Isotope Tracer To Determine Uptake and Efflux Dynamics of ZnO Nano- and Bulk Particles and Dissolved Zn to an Estuarine Snail. Environmental Science & Technology [Internet]. 2013 Aug 6 [cited 2018 Oct 30];47(15):8532–9. Available from:
http://pubs.acs.org/doi/abs/10.1021/es4011465 Cite
1.
Larsen T, Schmid S, Villanueva LG, Boisen A. Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators. ACS Nano [Internet]. 2013 Jul 23 [cited 2018 Oct 30];7(7):6188–93. Available from:
http://pubs.acs.org/doi/10.1021/nn402057f Cite
1.
Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B, et al. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles. Hussain S, editor. PLoS ONE [Internet]. 2013 Jul 22 [cited 2018 Oct 30];8(7):e68415. Available from:
https://dx.plos.org/10.1371/journal.pone.0068415 Cite
1.
Liu Y, Wang P, Wang Y, Zhu Z, Lao F, Liu X, et al. The Influence on Cell Cycle and Cell Division by Various Cadmium-Containing Quantum Dots. Small [Internet]. 2013 Jul 22 [cited 2018 Oct 30];9(14):2440–51. Available from:
http://doi.wiley.com/10.1002/smll.201300861 Cite
1.
Kong L, Tuomela S, Hahne L, Ahlfors H, Yli-Harja O, Fadeel B, et al. NanoMiner — Integrative Human Transcriptomics Data Resource for Nanoparticle Research. Hussain S, editor. PLoS ONE [Internet]. 2013 Jul 12 [cited 2018 Oct 30];8(7):e68414. Available from:
https://dx.plos.org/10.1371/journal.pone.0068414 Cite
1.
Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials [Internet]. 2013 Jun 5 [cited 2018 Oct 30];6(6):2295–350. Available from:
http://www.mdpi.com/1996-1944/6/6/2295 Cite
1.
Galluzzi M, Zhang S, Mohamadi S, Vakurov A, Podestà A, Nelson A. Interaction of Imidazolium-Based Room-Temperature Ionic Liquids with DOPC Phospholipid Monolayers: Electrochemical Study. Langmuir [Internet]. 2013 Jun 4 [cited 2018 Oct 30];29(22):6573–81. Available from:
http://pubs.acs.org/doi/10.1021/la400923d Cite
1.
Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles. Gan Y, editor. PLoS ONE [Internet]. 2013 May 30 [cited 2018 Oct 30];8(5):e64060. Available from:
http://dx.plos.org/10.1371/journal.pone.0064060 Cite
1.
Pietroiusti A, Campagnolo L, Fadeel B. Interactions of Engineered Nanoparticles with Organs Protected by Internal Biological Barriers. Small [Internet]. 2013 May 27 [cited 2018 Oct 30];9(9–10):1557–72. Available from:
http://doi.wiley.com/10.1002/smll.201201463 Cite
1.
Meng L, Chen R, Jiang A, Wang L, Wang P, Li C zhong, et al. Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Up-Regulation of the Neurotrophin Signaling Pathway. Small [Internet]. 2013 May 27 [cited 2018 Oct 30];9(9–10):1786–98. Available from:
http://doi.wiley.com/10.1002/smll.201201388 Cite
1.
Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, et al. Influence of the Physiochemical Properties of Superparamagnetic Iron Oxide Nanoparticles on Amyloid β Protein Fibrillation in Solution. ACS Chemical Neuroscience [Internet]. 2013 Mar 20 [cited 2018 Oct 30];4(3):475–85. Available from:
http://pubs.acs.org/doi/10.1021/cn300196n Cite
1.
Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W. Differences in the Biokinetics of Inhaled Nano- versus Micrometer-Sized Particles. Accounts of Chemical Research [Internet]. 2013 Mar 19 [cited 2018 Oct 30];46(3):714–22. Available from:
http://pubs.acs.org/doi/10.1021/ar300043r Cite
1.
Som C, Nowack B, Krug HF, Wick P. Toward the Development of Decision Supporting Tools That Can Be Used for Safe Production and Use of Nanomaterials. Accounts of Chemical Research [Internet]. 2013 Mar 19 [cited 2018 Oct 30];46(3):863–72. Available from:
http://pubs.acs.org/doi/10.1021/ar3000458 Cite
1.
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency. Journal of the American Chemical Society [Internet]. 2013 Jan 30 [cited 2018 Oct 30];135(4):1438–44. Available from:
http://pubs.acs.org/doi/10.1021/ja309812z Cite
1.
Varotto L, Domeneghetti S, Rosani U, Manfrin C, Cajaraville MP, Raccanelli S, et al. DNA Damage and Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg). Balcazar JL, editor. PLoS ONE [Internet]. 2013 Jan 23 [cited 2018 Oct 30];8(1):e54602. Available from:
https://dx.plos.org/10.1371/journal.pone.0054602 Cite
1.
Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, et al. An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrology [Internet]. 2013 [cited 2018 Oct 30];14(1). Available from:
http://bmcnephrol.biomedcentral.com/articles/10.1186/1471-2369-14-96 Cite
1.
Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). Journal of Nanoparticle Research [Internet]. 2013 [cited 2018 Oct 30];15(12). Available from:
http://link.springer.com/10.1007/s11051-013-2101-8 Cite
1.
Weiss VU, Lehner A, Kerul L, Grombe R, Kratzmeier M, Marchetti-Deschmann M, et al. Characterization of cross-linked gelatin nanoparticles by electrophoretic techniques in the liquid and the gas phase: Microfluidics and Miniaturization. ELECTROPHORESIS [Internet]. 2013 [cited 2018 Oct 30];34(24):3267–76. Available from:
http://doi.wiley.com/10.1002/elps.201300307 Cite
1.
Hougaard KS, Jackson P, Kyjovska ZO, Birkedal RK, De Temmerman PJ, Brunelli A, et al. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reproductive Toxicology [Internet]. 2013 [cited 2018 Oct 30];41:86–97. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0890623813001081 Cite
1.
Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine: Nanotechnology, Biology and Medicine [Internet]. 2013 [cited 2018 Oct 30];9(8):1159–68. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1549963413001822 Cite
1.
Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, et al. Applying quantitative structure–activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology [Internet]. 2013 [cited 2018 Oct 30];313(1):15–23. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0300483X12003976 Cite
1.
Meng L, Jiang A, Chen R, Li C zhong, Wang L, Qu Y, et al. Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology [Internet]. 2013 [cited 2018 Oct 30];313(1):49–58. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0300483X12004088 Cite
1.
Murray AR, Kisin E, Inman A, Young SH, Muhammed M, Burks T, et al. Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles In Vitro. Cell Biochemistry and Biophysics [Internet]. 2013 [cited 2018 Oct 30];67(2):461–76. Available from:
http://link.springer.com/10.1007/s12013-012-9367-9 Cite
1.
Novak S, Drobne D, Vaccari L, Kiskinova M, Ferraris P, Birarda G, et al. Effect of Ingested Tungsten Oxide (WO
x ) Nanofibers on Digestive Gland Tissue of Porcellio scaber (Isopoda, Crustacea): Fourier Transform Infrared (FTIR) Imaging. Environmental Science & Technology [Internet]. 2013 [cited 2018 Oct 30];47(19):11284–92. Available from:
http://pubs.acs.org/doi/10.1021/es402364w Cite
1.
Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Analytical and Bioanalytical Chemistry [Internet]. 2013 [cited 2018 Oct 30];405(25):8185–95. Available from:
http://link.springer.com/10.1007/s00216-013-7228-z Cite
1.
Waalewijn-Kool PL, Ortiz MD, Lofts S, van Gestel CAM. The effect of pH on the toxicity of zinc oxide nanoparticles to
Folsomia candida in amended field soil: Effect of soil pH on ZnO nanoparticle toxicity to
F. candida. Environmental Toxicology and Chemistry [Internet]. 2013 [cited 2018 Oct 30];32(10):2349–55. Available from:
http://doi.wiley.com/10.1002/etc.2302 Cite
2012
2248011
2012
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Larner F, Dogra Y, Dybowska A, Fabrega J, Stolpe B, Bridgestock LJ, et al. Tracing Bioavailability of ZnO Nanoparticles Using Stable Isotope Labeling. Environmental Science & Technology [Internet]. 2012 Nov 6 [cited 2018 Oct 30];46(21):12137–45. Available from:
http://pubs.acs.org/doi/10.1021/es302602j Cite
1.
Jedlovszky-Hajdú A, Bombelli FB, Monopoli MP, Tombácz E, Dawson KA. Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo. Langmuir [Internet]. 2012 Oct 23 [cited 2018 Oct 30];28(42):14983–91. Available from:
http://pubs.acs.org/doi/10.1021/la302446h Cite
1.
Mustonen K, Susi T, Kaskela A, Laiho P, Tian Y, Nasibulin AG, et al. Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein Journal of Nanotechnology [Internet]. 2012 Oct 17 [cited 2018 Oct 30];3:692–702. Available from:
http://www.beilstein-journals.org/bjnano/content/3/1/79 Cite
1.
Zhang S, Nelson A, Beales PA. Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle–Biomembrane Interaction. Langmuir [Internet]. 2012 Sep 4 [cited 2018 Oct 30];28(35):12831–7. Available from:
http://pubs.acs.org/doi/10.1021/la301771b Cite
1.
Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano [Internet]. 2012 Jul 24 [cited 2018 Oct 30];6(7):5845–57. Available from:
http://pubs.acs.org/doi/10.1021/nn300223w Cite
1.
Pitek AS, O’Connell D, Mahon E, Monopoli MP, Baldelli Bombelli F, Dawson KA. Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. Bansal V, editor. PLoS ONE [Internet]. 2012 Jul 19 [cited 2018 Oct 30];7(7):e40685. Available from:
https://dx.plos.org/10.1371/journal.pone.0040685 Cite
1.
Khan FR, Misra SK, García-Alonso J, Smith BD, Strekopytov S, Rainbow PS, et al. Bioaccumulation Dynamics and Modeling in an Estuarine Invertebrate Following Aqueous Exposure to Nanosized and Dissolved Silver. Environmental Science & Technology [Internet]. 2012 Jul 17 [cited 2018 Oct 30];46(14):7621–8. Available from:
http://pubs.acs.org/doi/10.1021/es301253s Cite
1.
Vallhov H, Kupferschmidt N, Gabrielsson S, Paulie S, Strømme M, Garcia-Bennett AE, et al. Adjuvant Properties of Mesoporous Silica Particles Tune the Development of Effector T Cells. Small [Internet]. 2012 Jul 9 [cited 2018 Oct 30];8(13):2116–24. Available from:
http://doi.wiley.com/10.1002/smll.201102620 Cite
1.
Fadeel B. Clear and present danger? Engineered nanoparticles and the immune system. Swiss Medical Weekly [Internet]. 2012 Jun 26 [cited 2018 Oct 30]; Available from:
http://doi.emh.ch/smw.2012.13609 Cite
1.
Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, et al. Adsorption of Surfactant Lipids by Single-Walled Carbon Nanotubes in Mouse Lung upon Pharyngeal Aspiration. ACS Nano [Internet]. 2012 May 22 [cited 2018 Oct 30];6(5):4147–56. Available from:
http://pubs.acs.org/doi/10.1021/nn300626q Cite
1.
Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, et al. Toxicogenomic Responses of the Model Organism Caenorhabditis elegans to Gold Nanoparticles. Environmental Science & Technology [Internet]. 2012 Apr 3 [cited 2018 Oct 30];46(7):4115–24. Available from:
http://pubs.acs.org/doi/10.1021/es2033108 Cite
1.
Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, et al. Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. Mukhopadhyay P, editor. PLoS ONE [Internet]. 2012 Mar 30 [cited 2018 Oct 30];7(3):e30923. Available from:
https://dx.plos.org/10.1371/journal.pone.0030923 Cite
1.
Shi J, Karlsson HL, Johansson K, Gogvadze V, Xiao L, Li J, et al. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles. ACS Nano [Internet]. 2012 Mar 27 [cited 2018 Oct 30];6(3):1925–38. Available from:
http://pubs.acs.org/doi/10.1021/nn2021056 Cite
1.
Sandin P, Fitzpatrick LW, Simpson JC, Dawson KA. High-Speed Imaging of Rab Family Small GTPases Reveals Rare Events in Nanoparticle Trafficking in Living Cells. ACS Nano [Internet]. 2012 Feb 28 [cited 2018 Oct 30];6(2):1513–21. Available from:
http://pubs.acs.org/doi/10.1021/nn204448x Cite
1.
Vakurov A, Brydson R, Nelson A. Electrochemical Modeling of the Silica Nanoparticle–Biomembrane Interaction. Langmuir [Internet]. 2012 Jan 17 [cited 2018 Oct 30];28(2):1246–55. Available from:
http://pubs.acs.org/doi/10.1021/la203568n Cite
1.
Johnston H, Brown D, Kermanizadeh A, Gubbins E, Stone V. Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications. Journal of Controlled Release [Internet]. 2012 [cited 2018 Oct 30];164(3):307–13. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S016836591200630X Cite
1.
Georgantzopoulou A, Balachandran YL, Rosenkranz P, Dusinska M, Lankoff A, Wojewodzka M, et al. Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology [Internet]. 2012 [cited 2018 Oct 30];7(7):1168–78. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2012.715312 Cite
1.
Johnson AC, Park B. Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environmental Toxicology and Chemistry [Internet]. 2012 [cited 2018 Oct 30];31(11):2582–7. Available from:
http://doi.wiley.com/10.1002/etc.1983 Cite
1.
Kazimirova A, Magdolenova Z, Barancokova M, Staruchova M, Volkovova K, Dusinska M. Genotoxicity testing of PLGA–PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis [Internet]. 2012 [cited 2018 Oct 30];748(1–2):42–7. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1383571812002495 Cite
1.
Waalewijn-Kool PL, Diez Ortiz M, van Gestel CAM. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology [Internet]. 2012 [cited 2018 Oct 30];21(7):1797–804. Available from:
http://link.springer.com/10.1007/s10646-012-0914-3 Cite
1.
Buffet PE, Amiard-Triquet C, Dybowska A, Risso-de Faverney C, Guibbolini M, Valsami-Jones E, et al. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicology and Environmental Safety [Internet]. 2012 [cited 2018 Oct 30];84:191–8. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0147651312002333 Cite
1.
Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, et al. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities: Fe3O4@mSiO2 WITH TUNABLE RELAXIVITIES. Contrast Media & Molecular Imaging [Internet]. 2012 [cited 2018 Oct 30];7(5):460–8. Available from:
http://doi.wiley.com/10.1002/cmmi.1473 Cite
1.
Pan JF, Buffet PE, Poirier L, Amiard-Triquet C, Gilliland D, Joubert Y, et al. Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana. Environmental Pollution [Internet]. 2012 [cited 2018 Oct 30];168:37–43. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0269749112001820 Cite
1.
Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry [Internet]. 2012 [cited 2018 Oct 30];31(8):1679–92. Available from:
http://doi.wiley.com/10.1002/etc.1880 Cite
1.
Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S. Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Analytical and Bioanalytical Chemistry [Internet]. 2012 [cited 2018 Oct 30];403(10):2843–50. Available from:
http://link.springer.com/10.1007/s00216-012-5920-z Cite
1.
Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, et al. Single-walled carbon nanotube-induced mitotic disruption. Mutation Research/Genetic Toxicology and Environmental Mutagenesis [Internet]. 2012 [cited 2018 Oct 30];745(1–2):28–37. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1383571811003536 Cite
1.
Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicˇová D, Wallin H, et al.
In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology [Internet]. 2012 [cited 2018 Oct 30];7(3):301–13. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2011.653416 Cite
1.
Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicˇová D, Wallin H, et al.
In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology [Internet]. 2012 [cited 2018 Oct 30];7(3):301–13. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2011.653416 Cite
1.
Tuoriniemi J, Cornelis G, Hassellöv M. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Analytical Chemistry [Internet]. 2012 [cited 2018 Oct 30];84(9):3965–72. Available from:
http://pubs.acs.org/doi/10.1021/ac203005r Cite
1.
Feliu N, Walter MV, Montañez MI, Kunzmann A, Hult A, Nyström A, et al. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials [Internet]. 2012 [cited 2018 Oct 30];33(7):1970–81. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0142961211014086 Cite
1.
Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology [Internet]. 2012 [cited 2018 Oct 30];6(1):36–46. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390.2011.552811 Cite
1.
Hašplová K, Hudecová A, Magdolénová Z, Bjøras M, Gálová E, Miadoková E, et al. DNA alkylation lesions and their repair in human cells: Modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD). Toxicology Letters [Internet]. 2012 [cited 2018 Oct 30];208(1):76–81. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0378427411015724 Cite
1.
Kenzaoui BH, Bernasconi CC, Hofmann H, Juillerat-Jeanneret L. Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine [Internet]. 2012 [cited 2018 Oct 30];7(1):39–53. Available from:
https://www.futuremedicine.com/doi/10.2217/nnm.11.85 Cite
2011
2248011
2011
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Garcia-Bennett AE, Xiao C, Zhou C, Castle T, Miyasaka K, Terasaki O. Bicontinuous Cubic Mesoporous Materials with Biphasic Structures. Chemistry - A European Journal [Internet]. 2011 Nov 25 [cited 2018 Oct 30];17(48):13510–6. Available from:
http://doi.wiley.com/10.1002/chem.201101831 Cite
1.
Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, et al. Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano [Internet]. 2011 Nov 22 [cited 2018 Oct 30];5(11):9074–81. Available from:
http://pubs.acs.org/doi/10.1021/nn203303c Cite
1.
Käkinen A, Bondarenko O, Ivask A, Kahru A. The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor. Sensors [Internet]. 2011 Nov 3 [cited 2018 Oct 30];11(11):10502–21. Available from:
http://www.mdpi.com/1424-8220/11/11/10502 Cite
1.
Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. Long, Needle-like Carbon Nanotubes and Asbestos Activate the NLRP3 Inflammasome through a Similar Mechanism. ACS Nano [Internet]. 2011 Sep 27 [cited 2018 Oct 30];5(9):6861–70. Available from:
http://pubs.acs.org/doi/10.1021/nn200595c Cite
1.
Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, et al. Water-Soluble Superparamagnetic Magnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging. ACS Nano [Internet]. 2011 Aug 23 [cited 2018 Oct 30];5(8):6315–24. Available from:
http://pubs.acs.org/doi/10.1021/nn201348s Cite
1.
Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, et al. Direct Effects of Carbon Nanotubes on Dendritic Cells Induce Immune Suppression Upon Pulmonary Exposure. ACS Nano [Internet]. 2011 Jul 26 [cited 2018 Oct 30];5(7):5755–62. Available from:
http://pubs.acs.org/doi/10.1021/nn2014479 Cite
1.
Wick P, Clift MJD, Rösslein M, Rothen-Rutishauser B. A Brief Summary of Carbon Nanotubes Science and Technology: A Health and Safety Perspective. ChemSusChem [Internet]. 2011 Jul 18 [cited 2018 Oct 30];4(7):905–11. Available from:
http://doi.wiley.com/10.1002/cssc.201100161 Cite
1.
van Leeuwen HP, Town RM, Buffle J. Chemodynamics of Soft Nanoparticulate Metal Complexes in Aqueous Media: Basic Theory for Spherical Particles with Homogeneous Spatial Distributions of Sites and Charges. Langmuir [Internet]. 2011 Apr 19 [cited 2018 Oct 30];27(8):4514–9. Available from:
http://pubs.acs.org/doi/abs/10.1021/la200265p Cite
1.
Kotchey GP, Allen BL, Vedala H, Yanamala N, Kapralov AA, Tyurina YY, et al. The Enzymatic Oxidation of Graphene Oxide. ACS Nano [Internet]. 2011 Mar 22 [cited 2018 Oct 30];5(3):2098–108. Available from:
http://pubs.acs.org/doi/10.1021/nn103265h Cite
1.
Gonzalez L, Corradi S, Thomassen LeenCJ, Martens JohanA, Cundari E, Lison D, et al. Methodological Approaches Influencing Cellular Uptake and Cyto-(Geno) Toxic Effects of Nanoparticles. Journal of Biomedical Nanotechnology [Internet]. 2011 Jan 1 [cited 2018 Oct 30];7(1):3–5. Available from:
http://www.ingentaconnect.com/content/10.1166/jbn.2011.1172 Cite
1.
Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemotherapy and Pharmacology [Internet]. 2011 [cited 2018 Oct 30];68(5):1161–72. Available from:
http://link.springer.com/10.1007/s00280-011-1596-x Cite
1.
Kool PL, Ortiz MD, van Gestel CAM. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution [Internet]. 2011 [cited 2018 Oct 30];159(10):2713–9. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0269749111002880 Cite
1.
Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ, et al. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International [Internet]. 2011 [cited 2018 Oct 30];37(6):1111–7. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S016041201100050X Cite
1.
Gibson N, Holzwarth U, Abbas K, Simonelli F, Kozempel J, Cydzik I, et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Archives of Toxicology [Internet]. 2011 [cited 2018 Oct 30];85(7):751–73. Available from:
http://link.springer.com/10.1007/s00204-011-0701-6 Cite
1.
Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicology and Applied Pharmacology [Internet]. 2011 [cited 2018 Oct 30];253(2):81–93. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0041008X11000974 Cite
1.
Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, et al. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicology and Applied Pharmacology [Internet]. 2011 [cited 2018 Oct 30];252(1):1–10. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0041008X1100041X Cite
1.
Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2011 [cited 2018 Oct 30];77(3):407–16. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S093964111000370X Cite
1.
Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta (BBA) - General Subjects [Internet]. 2011 [cited 2018 Oct 30];1810(3):361–73. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0304416510001145 Cite
1.
Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, et al. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicology Letters [Internet]. 2011 [cited 2018 Oct 30];200(3):176–86. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0378427410017728 Cite
1.
Allmaier G, Maißer A, Laschober C, Messner P, Szymanski WW. Parallel differential mobility analysis for electrostatic characterization and manipulation of nanoparticles and viruses. TrAC Trends in Analytical Chemistry [Internet]. 2011 [cited 2018 Oct 30];30(1):123–32. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0165993610002979 Cite
2010
2248011
2010
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Dresselhaus MS, Jorio A, Souza Filho AG, Saito R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2010 Dec 13 [cited 2018 Oct 30];368(1932):5355–77. Available from:
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2010.0213 Cite
1.
Romero G, Estrela-Lopis I, Zhou J, Rojas E, Franco A, Espinel CS, et al. Surface Engineered Poly(lactide-
co -glycolide) Nanoparticles for Intracellular Delivery: Uptake and Cytotoxicity—A Confocal Raman Microscopic Study. Biomacromolecules [Internet]. 2010 Nov 8 [cited 2018 Oct 30];11(11):2993–9. Available from:
http://pubs.acs.org/doi/abs/10.1021/bm1007822 Cite
1.
Schmid S, Dohn S, Boisen A. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings. Sensors [Internet]. 2010 Aug 27 [cited 2018 Oct 30];10(9):8092–100. Available from:
http://www.mdpi.com/1424-8220/10/9/8092 Cite
1.
Galvao V, Miranda JGV, Andrade RFS, Andrade JS, Gallos LK, Makse HA. Modularity map of the network of human cell differentiation. Proceedings of the National Academy of Sciences [Internet]. 2010 Mar 30 [cited 2018 Oct 30];107(13):5750–5. Available from:
http://www.pnas.org/cgi/doi/10.1073/pnas.0914748107 Cite
1.
Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. A critical review of the biological mechanisms underlying the
in vivo and
in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology [Internet]. 2010 [cited 2018 Oct 30];4(2):207–46. Available from:
http://www.tandfonline.com/doi/full/10.3109/17435390903569639 Cite
1.
Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, Laurila K, et al. Genome-wide Profiling of Interleukin-4 and STAT6 Transcription Factor Regulation of Human Th2 Cell Programming. Immunity [Internet]. 2010 [cited 2018 Oct 30];32(6):852–62. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1074761310002141 Cite
1.
Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology [Internet]. 2010 [cited 2018 Oct 30];5(5):354–9. Available from:
http://www.nature.com/articles/nnano.2010.44 Cite
1.
Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews [Internet]. 2010 [cited 2018 Oct 30];62(3):362–74. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0169409X09003469 Cite
2009
2248011
2009
items
1
vancouver
date
desc
1
https://www.nanosafetycluster.eu/wp-content/plugins/zotpress/
1.
Witasp E, Kupferschmidt N, Bengtsson L, Hultenby K, Smedman C, Paulie S, et al. Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicology and Applied Pharmacology [Internet]. 2009 Sep 15 [cited 2018 Oct 30];239(3):306–19. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0041008X09002592 Cite
1.
Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, et al. Induction of aneuploidy by single-walled carbon nanotubes. Environmental and Molecular Mutagenesis [Internet]. 2009 [cited 2018 Oct 30];50(8):708–17. Available from:
http://doi.wiley.com/10.1002/em.20529 Cite
1.
Tyurin VA, Tyurina YY, Jung MY, Tungekar MA, Wasserloos KJ, Bayır H, et al. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. Journal of Chromatography B [Internet]. 2009 [cited 2018 Oct 30];877(26):2863–72. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1570023209001755 Cite
1.
Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, et al. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacology & Therapeutics [Internet]. 2009 [cited 2018 Oct 30];121(2):192–204. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0163725808002179 Cite