Public deliverables & publications

Sharing Knowledge
You are here:

Overview

This page provides available knowledge from the nanosafety community, as produced by projects and published through public deliverables and peer reviewed publications. In due course, the NSC aims to also provide links to publicly available datasets, analysis tools and software.

If you upload your publication to Zotero, please link it to the NSC group in Zotero. This way, your publication will automatically be added to the list below.

If you would like an article, report, public deliverable or other publication to be added to the list, please send the DOI and the publication URL to info@nanosafetycluster.eu. If your resource does not have a DOI you can either acquire one for free from Zenodo. If you upload your publication to Zenodo, please do not forget to link it to the NSC Community in Zenodo.

 

NOTE: the list of deliverables and publications below is not complete.

0
Publications

Deliverables and publications

1.
Jeliazkova N, Longhin E, El Yamani N, Rundén-Pran E, Moschini E, Serchi T, et al. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials. Nat Protoc [Internet]. 2024 May 16 [cited 2024 May 18]; Available from: https://www.nature.com/articles/s41596-024-00993-1
1.
Ammar A, Evelo C, Willighagen E. FAIR assessment of nanosafety data reusability with community standards. Sci Data [Internet]. 2024 May 16 [cited 2024 May 17];11(1):503. Available from: https://www.nature.com/articles/s41597-024-03324-x
1.
Flemming R. Cassee, Eric A. J. Bleeker, Cyrille Durand, Thomas Exner, Andreas Falk, Danail Hristozov, et al. Roadmap Safe and Sustainable Advanced and Innovative Materials 2024-2030. 2024 May 8 [cited 2024 May 8]; Available from: https://zenodo.org/doi/10.5281/zenodo.11147296
1.
Flemming R. Cassee, Eric A. J. Bleeker, Cyrille Durand, Thomas Exner, Andreas Falk, Danail Hristozov, et al. Roadmap Safe and Sustainable Advanced and Innovative Materials 2024-2030. 2024 May 8 [cited 2024 May 8]; Available from: https://zenodo.org/doi/10.5281/zenodo.11141776
1.
Van Rijn JPM, Martens M, Ammar A, Cimpan MR, Fessard V, Hoet P, et al. From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials. J Cheminform [Internet]. 2024 May 1 [cited 2024 May 2];16(1):49. Available from: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00833-0
1.
Hohenester U, Neuper C, Šimić M, Hill C. Imaging the scattered light of a nanoparticle through a cylindrical capillary. Nanophotonics [Internet]. 2024 Feb 21 [cited 2024 Apr 28];13(4):457–63. Available from: https://www.degruyter.com/document/doi/10.1515/nanoph-2023-0773/html
1.
Aspiazu UO, Paulis M, Leiza JR. Photon Density Wave spectroscopy to monitor the particle size in seeded semibatch emulsion copolymerization reactions. Chemical Engineering Journal [Internet]. 2024 [cited 2024 Apr 28];483:149292. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894724007770
1.
Flemming R. Cassee, Eric A. J. Bleeker, Cyrille Durand, Thomas Exner, Andreas Falk, Danail Hristozov, et al. Roadmap Safe and Sustainable Advanced and Innovative Materials 2024-2030. 2024 Apr 17 [cited 2024 Apr 21]; Available from: https://zenodo.org/doi/10.5281/zenodo.10980019
1.
Saeedimasine M, Rahmani R, Lyubartsev AP. Biomolecular Adsorption on Nanomaterials: Combining Molecular Simulations with Machine Learning. J Chem Inf Model [Internet]. 2024 Apr 16 [cited 2024 Apr 19];acs.jcim.3c01606. Available from: https://pubs.acs.org/doi/10.1021/acs.jcim.3c01606
1.
Crow B, Stokes WE, Kapur N, Fite MB, Nelson A. Polyvinylpyrrolidone (PvP) adsorbs on and interacts with biomembrane-like layers. J Solid State Electrochem [Internet]. 2024 [cited 2024 Apr 11];28(2):411–8. Available from: https://link.springer.com/10.1007/s10008-023-05784-4
1.
Trump BD, Antunes D, Palma-Oliveira J, Nelson A, Hudecova AM, Rundén-Pran E, et al. Safety-by-design and engineered nanomaterials: the need to move from theory to practice. Environ Syst Decis [Internet]. 2024 [cited 2024 Apr 11];44(1):177–88. Available from: https://link.springer.com/10.1007/s10669-023-09927-w
1.
Ede JD, Diges AS, Zhang Y, Shatkin JA. Life-cycle risk assessment of graphene-enabled textiles in fire protection gear. NanoImpact [Internet]. 2024 [cited 2024 Apr 11];33:100488. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074823000393
1.
Soto Beobide A, Bieri R, Szakács Z, Sparwasser K, Kaitsa IG, Georgiopoulos I, et al. Raman Spectroscopy Unfolds the Fate and Transformation of SWCNTs after Abrasive Wear of Epoxy Floor Coatings. Nanomaterials [Internet]. 2024 Jan 3 [cited 2024 Apr 11];14(1):120. Available from: https://www.mdpi.com/2079-4991/14/1/120
1.
van Lingen HJ, Suarez-Diez M, Saccenti E. Exploring RNA-seq data normalization methods using principal component analysis and KEGG pathway enrichment. 2024 Jan 18 [cited 2024 Apr 11]; Available from: https://zenodo.org/doi/10.5281/zenodo.10528478
1.
Amini PM, Rouse I, Subbotina J, Lobaskin V. Multiscale modelling of biomolecular corona formation on metallic surfaces. Beilstein J Nanotechnol [Internet]. 2024 Feb 13 [cited 2024 Apr 7];15:215–29. Available from: https://www.beilstein-journals.org/bjnano/articles/15/21
1.
Amini PM, Rouse I, Subbotina J, Lobaskin V. Multiscale modelling of biomolecular corona formation on metallic surfaces. Beilstein J Nanotechnol [Internet]. 2024 Feb 13 [cited 2024 Apr 7];15(1):215–29. Available from: https://www.beilstein-journals.org/bjnano/articles/15/21
1.
Andrew Nelson, Anthony Bochon, Ignasi Gispert Pi, Maria Dusinska, Dalila Antunes, Karen Steenson, et al. SABYDOMA 2nd SSbD Workshop - A stakeholder’s perspective of Safe-and-­Sustainable-by-Design – a bigger picture! 2024 Mar 7 [cited 2024 Apr 2]; Available from: https://zenodo.org/doi/10.5281/zenodo.10894013
1.
Flemming R. Cassee, Eric A. J. Bleeker, Cyrille Durand, Thomas Exner, Andreas Falk, Danail Hristozov, et al. Roadmap Safe and Sustainable Advanced and Innovative Materials 2024-2030. 2024 Mar 26 [cited 2024 Mar 30]; Available from: https://zenodo.org/doi/10.5281/zenodo.10876680
1.
Kolokathis P, Voyiatzis E, Sidiropoulos N, Tsoumanis A, Melagraki G, Tamm K, et al. ASCOT: A Web Tool for the Digital Construction of Energy Minimized Ag, CuO, TiO2 Spherical Nanoparticles and Calculation of Their Atomistic Descriptors. Computational and Structural Biotechnology Journal [Internet]. 2024 [cited 2024 Mar 21];S2001037024000643. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2001037024000643
1.
Tancheva G, Nymark P, Hongisto V, Kochev N, Jeliazkova N, Patyra K, et al. Automatic workflow for in vitro high-throughput screening data FAIRification, preprocessing and scoring. 2024 Jan 10 [cited 2024 Mar 15]; Available from: https://zenodo.org/doi/10.5281/zenodo.10517627
1.
Dumit VI, Liu Y, Bahl A, Kohonen P, Grafström RC, Nymark P, et al. Meta‐Analysis of Integrated Proteomic and Transcriptomic Data Discerns Structure–Activity Relationship of Carbon Materials with Different Morphologies. Advanced Science [Internet]. 2024 [cited 2024 Mar 15];11(9):2306268. Available from: https://onlinelibrary.wiley.com/doi/10.1002/advs.202306268
1.
Di Battista V, Werle K, Skjolding LM, Wohlleben W, Baun A. Behaviour of advanced materials in environmental aquatic media – dissolution kinetics and dispersion stability of perovskite automotive catalysts. Environ Sci: Nano [Internet]. 2024 [cited 2024 Mar 15];11(1):91–102. Available from: http://xlink.rsc.org/?DOI=D3EN00685A
1.
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, et al. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. Advanced Science [Internet]. 2024 Jan 28 [cited 2024 Mar 15];2308659. Available from: https://onlinelibrary.wiley.com/doi/10.1002/advs.202308659
1.
Willighagen E. FAIR assessment of nanosafety data reusability with community standards [Internet]. 2024 Feb 12 [cited 2024 Feb 13]. Available from: https://zenodo.org/doi/10.5281/zenodo.10649034
1.
Apel C, Kümmerer K, Sudheshwar A, Nowack B, Som C, Colin C, et al. Safe-and-sustainable-by-design: State of the art approaches and lessons learned from value chain perspectives. Current Opinion in Green and Sustainable Chemistry [Internet]. 2024 [cited 2024 Feb 7];45:100876. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452223623001244
1.
Willighagen E. Ten simple actions to make NanoSafety Cluster Research Output more Findable. 2024 Jan 22 [cited 2024 Jan 24]; Available from: https://zenodo.org/doi/10.5281/zenodo.10533126
1.
Willighagen E. The ELIXIR Toxicology Community. 2024 Jan 22 [cited 2024 Jan 24]; Available from: https://zenodo.org/doi/10.5281/zenodo.10551071
1.
Di Battista V, Sanchez-Lievanos KR, Jeliazkova N, Murphy F, Tsiliki G, Zabeo A, et al. Similarity of multicomponent nanomaterials in a safer-by-design context: the case of core–shell quantum dots. Environ Sci: Nano [Internet]. 2024 [cited 2024 Jan 21];10.1039.D3EN00338H. Available from: http://xlink.rsc.org/?DOI=D3EN00338H

1.
Han L, Haefner V, Yu Y, Han B, Ren H, Irmler M, et al. Nanoparticle-Exposure-Triggered Virus Reactivation Induces Lung Emphysema in Mice. ACS Nano [Internet]. 2023 Nov 14 [cited 2024 Mar 15];17(21):21056–72. Available from: https://pubs.acs.org/doi/10.1021/acsnano.3c04111 Cite
1.
Maier D, Exner TE, Papadiamantis AG, Ammar A, Tsoumanis A, Doganis P, et al. Harmonising knowledge for safer materials via the “NanoCommons” Knowledge Base. Front Phys [Internet]. 2023 Nov 13 [cited 2024 May 20];11:1271842. Available from: https://www.frontiersin.org/articles/10.3389/fphy.2023.1271842/full Cite
1.
van Lingen HJ, Rumbo C, Gomez Cuadrado L, Suarez Diez M, Wang T, Bianco A, et al. Report on final methodologies and draft standard operating procedures (SOP) proposed including MCNM and HARN specific adaptations (DIAGONAL). 2023 Nov 6 [cited 2024 Apr 12]; Available from: https://zenodo.org/doi/10.5281/zenodo.10076035 Cite
1.
Larraz A, BARBERO COLMENAR E, Ballesteros Riaza A, Vela V. Deliverable 5.5: Report on SbD strategies. 2023 Nov 2 [cited 2024 Apr 12]; Available from: https://zenodo.org/doi/10.5281/zenodo.10075819 Cite
1.
Tanja Krone, Xavier Pinho, Eugene van Someren, Susan Dekkers. Bayesian Network Models to combine and update models using incomplete data. 2023 Oct 26 [cited 2024 Mar 15]; Available from: https://zenodo.org/doi/10.5281/zenodo.10420899 Cite
1.
Mackevica A, Hendriks L, Meili-Borovinskaya O, Baun A, Skjolding LM. Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae. Nanomaterials [Internet]. 2023 Sep 1 [cited 2024 Mar 15];13(17):2468. Available from: https://www.mdpi.com/2079-4991/13/17/2468 Cite
1.
Barros R. Public DIAGONAL Project website – D7.6 [Internet]. [object Object]; 2023 Aug [cited 2024 Apr 12]. Available from: https://zenodo.org/record/8410218 Cite
1.
Wyrzykowska E, Swirog M. Influence of protein corona on cytotoxicity of metal oxide nanoparticles against human keratinocyte cell line (HaCaT) [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297121 Cite
1.
Wyrzykowska E, Swirog M. Identification of factors determining the process of aggregation/agglomeration of metal oxide nanoparticles in a biological medium [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297079 Cite
1.
Wyrzykowska E, Swirog M. The influence of the properties of inorganic solvents on the hydrodynamic diameter of TiO2 nanoparticles [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297068 Cite
1.
Mikolajczyk A, Sizochenko N, Wyrzykowska E, Swirog M. Predictive nano-QSAR modeling of the cytotoxicity using epithelial cells obtained from Chinese hamster ovary (CHO-K1 cell line) for hybrid TiO2-based nanomaterials [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297048 Cite
1.
Mikolajczyk A, Sizochenko N, Wyrzykowska E, Swirog M. Photodegradation of phenol (τOH) by TiO2-based nanophotocatalysts determined in line with the SAPNet methodology [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297022 Cite
1.
Lyubartsev A, Brandt E, Saeedimasine M, Roja Rahmani. Adsorption free energies and potentials of mean-force for interactions between amino acids, lipid fragments, and nanoparticles [Internet]. Zenodo; 2023 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/8297848 Cite
1.
Martens M, Willighagen E, Evelo C. Adverse Outcome Pathway Wiki RDF [Internet]. Zenodo; 2023 [cited 2023 Aug 29]. Available from: https://zenodo.org/record/8297026 Cite
1.
Exner TE, Papadiamantis AG, Melagraki G, Amos JD, Bossa N, Gakis GP, et al. Metadata stewardship in nanosafety research: learning from the past, preparing for an “on-the-fly” FAIR future. Front Phys [Internet]. 2023 Aug 17 [cited 2024 Mar 30];11:1233879. Available from: https://www.frontiersin.org/articles/10.3389/fphy.2023.1233879/full Cite
1.
Kolokathis PD, Sidiropoulos NK, Tsoumanis A, Papadiamantis AG, Lynch I, Afantitis A. NanoConstruct: A toolbox for the digital reconstruction of Energy Minimized NanoParticles, Nanosheets and NanoTubes Powered by Enalos Cloud Platform. 2023 Jun 14 [cited 2024 Apr 11]; Available from: https://zenodo.org/record/8039391 Cite
1.
Kolokathis PD, William N, Timperley CM, Bird M, Tattersall J, Nelson A, et al. Interactions of Bispyridinium compounds with the DOPC Membrane as revealed by Constraint Dynamics Simulations and Rapid Cyclic Voltammetry. 2023 Jun 14 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/8039305 Cite
1.
Tancheva G, Nymark P, Hongisto V, Kochev N, Jeliazkova N. Automatic workflow for HTS data FAIRification, preprocessing and Tox5 in-vitro toxicity scoring. 2023 Jun 12 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/8029959 Cite
1.
Alfaro Serrano B, Steenson K, Resch S, Fito C. A control system solution to SAfety BY Design Of nanoMAterials // SbD4Nano e-infrastructure for performance testing & implementation of SbD approaches in the nanotechnology supply chain. 2023 Jun 11 [cited 2024 Apr 2]; Available from: https://zenodo.org/doi/10.5281/zenodo.10472316 Cite
1.
Stokes W, Kapur N, Chakraborty S, Valsami-Jones E, Kohl Y, Nelson A. SAFE AND SUSTAINABLE NANOMATERIAL DESIGN THROUGH ACCELERATED WEAR TESTING COUPLED WITH HIGH-THROUGHPUT SCREENING. 2023 Jun 8 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/8043835 Cite
1.
Nelson A, Crow B, Kapur N, Owen J, Busquets M, Stokes W. Polyvinylpyrrolidone (PvP) Interaction with Biomembrane-Like Layers. 2023 Jun 6 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/8115033 Cite
1.
Van Someren E, Shandilya N, Franken R, Pinho X, Krone T, Van Stokkum R, et al. HARMLESS Decision Support System. 2023 Jun 6 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/8099067 Cite
1.
Anthony Bochon, Andrew Nelson, Hubert Rauscher, Muhammad Nizam Awang, Paul V. Majkowski, Leonie Reins, et al. SABYDOMA’s 2nd Legal Workshop on Safe-by-Design (SbD). 2023 Jun 5 [cited 2024 Apr 2]; Available from: https://zenodo.org/doi/10.5281/zenodo.8072145 Cite
1.
NATALIA FERNANDEZ PAMPIN, JUAN ANTONIO TAMAYO RAMOS, DASGUPTA N, VIVAS DDLF, GARCIA RB, MARTIN SM, et al. In vitro assessment of skin irritation potential of graphene based materials using reconstructed human epidermis (RhE). 2023 Jun 4 [cited 2024 Apr 11]; Available from: https://zenodo.org/record/8042645 Cite
1.
VIVAS DDLF, FERNANDEZ SC, NATALIA FERNANDEZ PAMPIN, DASGUPTA N, CUADRADO LG, MARTA BACCARO, et al. Development of an approach to characterize nanoparticles toxicity in the environment throug toxicokinetics and toxicodynamics analysis in biofilms pseudomonas putida. 2023 Jun 4 [cited 2024 Apr 11]; Available from: https://zenodo.org/record/8042591 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of Fe3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7990086 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7990214 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7990251 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7990302 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of CeO2/Co3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7989699 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized ZrO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7965537 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7986673 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7966355 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized AlOOH nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7966245 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7966166 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7966134 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7965603 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7965446 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7941567 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized TiO2 D540 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7961318 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized CeO2 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7941462 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co3O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7941248 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Fe2O3 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7941002 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7940770 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7940539 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7940272 Cite
1.
Knigge, Xenia, Radnik, Jörg. Physico-chemical characterization of sterilized ZnO nanoparticles by XPS / HAXPES / SEM [Internet]. Zenodo; 2023 [cited 2023 Jun 11]. Available from: https://zenodo.org/record/7940162 Cite
1.
Wang S, Gao X, Mo X, Phillips DL, Tse ECM. Immobilization of a Molecular Copper Complex and a Carboxylate-Terminated Cocatalyst on a Metal Oxide Electrode for Enhanced Electrocatalytic Oxygen Reduction. ACS Catal [Internet]. 2023 Apr 21 [cited 2024 Apr 2];13(8):5599–608. Available from: https://pubs.acs.org/doi/10.1021/acscatal.3c00384 Cite
1.
Mo X, Deng Y, Lai SKM, Gao X, Yu HL, Low KH, et al. Mechanical Interlocking Enhances the Electrocatalytic Oxygen Reduction Activity and Selectivity of Molecular Copper Complexes. J Am Chem Soc [Internet]. 2023 Mar 22 [cited 2024 Apr 2];145(11):6087–99. Available from: https://pubs.acs.org/doi/10.1021/jacs.2c10988 Cite
1.
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, et al. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. Nanomaterials [Internet]. 2023 Mar 15 [cited 2024 Mar 15];13(6):1059. Available from: https://www.mdpi.com/2079-4991/13/6/1059 Cite

1.
Kastlmeier MT, Guenther EM, Stoeger T, Voss C. Lung Organoids for Hazard Assessment of Nanomaterials. IJMS [Internet]. 2022 Dec 10 [cited 2024 Mar 15];23(24):15666. Available from: https://www.mdpi.com/1422-0067/23/24/15666 Cite
1.
Ede JD, Diges A, Shatkin JA. Life-cycle Risk Assessment of Consumer Applications of Graphene: Outcomes, Data Gaps and Priorities. 2022 Dec 5 [cited 2024 Apr 12]; Available from: https://zenodo.org/record/8148725 Cite
1.
Furxhi I. Extracting interpretable rules with Bayesian Networks. A case study of intrinsic human hazardous properties of silver nanoforms for the Safety Dimension of Safe and Sustainable by design paradigm. [Internet]. Zenodo; 2022 [cited 2023 Feb 26]. Available from: https://zenodo.org/record/7335039 Cite
1.
Resch S, Haupt B, Jagersbacher-Uhl S, Jung-Waclik S, Ahern C. Plan for Communication, Dissemination and Exploitation of Project Results (PEDR). 2022 Nov 15 [cited 2024 Apr 12]; Available from: https://zenodo.org/record/8129153 Cite
1.
Saarimäki LA, Fratello M, Pavel A, Korpilähde S, Leppänen J, Serra A, et al. A Curated Gene and Biological System Annotation of Adverse Outcome Pathways Related to Human Health [Internet]. Zenodo; 2022 [cited 2023 Nov 22]. Available from: https://zenodo.org/record/7980953 Cite
1.
Soto Beobide A, Moschovi AM, Mathioudakis GN, Kourtelesis M, Lada ZG, Andrikopoulos KS, et al. High Catalytic Efficiency of a Nanosized Copper-Based Catalyst for Automotives: A Physicochemical Characterization. Molecules [Internet]. 2022 Oct 31 [cited 2024 Apr 11];27(21):7402. Available from: https://www.mdpi.com/1420-3049/27/21/7402 Cite
1.
Mikolajczyk A, Falkowski D. One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. IJMS [Internet]. 2022 Oct 30 [cited 2024 Apr 11];23(21):13196. Available from: https://www.mdpi.com/1422-0067/23/21/13196 Cite
1.
Cazzagon V, Giubilato E, Bonetto A, Blosi M, Zanoni I, Costa AL, et al. Identification of the safe(r) by design alternatives for nanosilver-enabled wound dressings. Front Bioeng Biotechnol [Internet]. 2022 Oct 11 [cited 2022 Oct 15];10:987650. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.987650/full Cite
1.
Longhin EM, El Yamani N, Rundén-Pran E, Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol [Internet]. 2022 Sep 28 [cited 2022 Oct 18];4:981701. Available from: https://www.frontiersin.org/articles/10.3389/ftox.2022.981701/full Cite
1.
Tobin L. NSC Newsletter Issue 27. 2022 Sep 2 [cited 2024 Jan 24]; Available from: https://zenodo.org/record/7043435 Cite
1.
van Rijn J, Afantitis A, Culha M, Dusinska M, Exner TE, Jeliazkova N, et al. European Registry of Materials: global, unique identifiers for (undisclosed) nanomaterials. J Cheminform [Internet]. 2022 Aug 24 [cited 2022 Aug 24];14(1):57. Available from: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00614-7 Cite
1.
Mo X, Gao X, Gillado AV, Chen HY, Chen Y, Guo Z, et al. Direct 3D Printing of Binder-Free Bimetallic Nanomaterials as Integrated Electrodes for Glycerol Oxidation with High Selectivity for Valuable C 3 Products. ACS Nano [Internet]. 2022 Aug 23 [cited 2024 Apr 2];16(8):12202–13. Available from: https://pubs.acs.org/doi/10.1021/acsnano.2c02865 Cite
1.
Šimić M, Auer D, Neuper C, Šimić N, Prossliner G, Prassl R, et al. Real-Time Nanoparticle Characterization Through Optofluidic Force Induction. Phys Rev Applied [Internet]. 2022 Aug 19 [cited 2024 Apr 28];18(2):024056. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.18.024056 Cite
1.
Falk A, Pogany A, Aungkavattana P, Bañares MA, Beitollahi A, Bim V, et al. INISS-Nano: revised concept and action plan (International Network Initiative on Safe and Sustainable Nanotechnologies). 2022 Jul 14 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/7877359 Cite
1.
Falk A, Pogany A, Aungkavattana P, Bañares MA, Beitollahi A, Bim V, et al. INISS-Nano: revised concept and action plan (International Network Initiative on Safe and Sustainable Nanotechnologies). 2022 Jul 14 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/6818049 Cite
1.
Ede J, Diges A, Shatkin JA. Life-Cycle Risk Assessment of Graphene Functional Fabrics. 2022 Jun 28 [cited 2024 Apr 12]; Available from: https://zenodo.org/record/8141542 Cite
1.
Chouliara A, Papaioannou E, Mavronasou K, Bairamis A, Grigoropoulos A, Zoikis Karathanasis A. Use of a 3D printed auxiliary module for the quality improvement of Ni-P/SiC nanocomposite coatings. 2022 Jun 27 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6786791 Cite
1.
Farias PMA, Cardozo ODF, Stingl A. Towards safety and sustainability in scalable production of semiconducting nano- and non-nanomaterials: Zinc oxide - a case study. 2022 Jun 24 [cited 2024 Apr 12]; Available from: https://zenodo.org/record/6793572 Cite
1.
Kardamaki A, Nikolakopoulos A, Doganis P, Sarimveis H. Production of Safe and Functional Nanomaterials Ιntroducing the Safety By Process Control Concept. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6786804 Cite
1.
Nelson A, Crow B, Stokes W. Aminoquinoline/Antimalarial Binding to Fluid Lipid Assemblies Depends on Electron Density on Quinoline. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6793392 Cite
1.
Stokes W, Kapur N, Chakraborty S, Valsami-Jones E, Nelson A. Design of a Nanomaterial Release Environment to Investigate Rapid Assessment with a Membrane-on-Chip Screening Module. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6786857 Cite
1.
Nelson LA, Steenson K. A Highly Innovative Approach to the Safe-by-Design Paradigm: The SABYDOMA Story. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6793430 Cite
1.
Gispert I, Puntes V, Casals E. Regulatory Innovation Trial for NPs Selection Rules. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6786835 Cite
1.
Nelson A, William N, Timperley CM, Bird M, Tattersall JEH, Afantitis A, et al. Bispyridinium Compound Screening Using Phospholipid Target Sensor Elements. 2022 Jun 24 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6793413 Cite
1.
Vogel U, Poulsen SS. AOP Training Session. 2022 Jun 23 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/6806125 Cite
1.
Soto A, Moschovi AM, Mathioudakis G, Lada Z, Andrikopoulos KS, Sygellou L, et al. Nanosized copper-based catalyst for automotive: physicochemical characterization. 2022 Jun 21 [cited 2024 Apr 12]; Available from: https://zenodo.org/record/7501137 Cite
1.
Pousen SS, Baun A, Stöger T, Navas JM, Connolly M, Vogel UB. Engineered nanomaterial-relevant AOPs; network creation and identification of key nodes for adverse outcomes. 2022 Jun 21 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/6806067 Cite
1.
van Someren E, Shandilya N, Franken R, Krone T, van Stokkum R, Suarez-Merino B, et al. Conceptual Design of the HARMLESS Decision Support System. 2022 Jun 21 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/6806190 Cite
1.
Stoliński F, Rybińska-Fryca A, Gromelski M, Mikolajczyk A, Puzyn T. NanoMixHamster: a web-based tool for predicting cytotoxicity of TiO 2 -based multicomponent nanomaterials toward Chinese hamster ovary (CHO-K1) cells. Nanotoxicology [Internet]. 2022 Jun 17 [cited 2022 Jun 21];1–14. Available from: https://www.tandfonline.com/doi/full/10.1080/17435390.2022.2080609 Cite
1.
Vakurov A, Drummond-Brydson R, William N, Sanver D, Bastús N, Moriones OH, et al. Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers. Langmuir [Internet]. 2022 May 10 [cited 2024 Apr 2];38(18):5372–80. Available from: https://pubs.acs.org/doi/10.1021/acs.langmuir.1c03155 Cite
1.
Tobin L. NanoSafety Cluster Newsletter issue 26. 2022 May 9 [cited 2024 Jan 24]; Available from: https://zenodo.org/record/6532985 Cite
1.
Punz, Benjamin, Johnson, Litty, Himly, Martin. Raw data of multiplex assay on cyto-/chemokine secretion from human monocyte-derived dendritic cells [Internet]. Zenodo; 2022 [cited 2022 Sep 18]. Available from: https://zenodo.org/record/6473305 Cite
1.
Traas L, Serratosa F, Álvarez S, Van Someren E, Shandilya N, Jeliazkova N, et al. D1.2. SbD4Nano web based repository on Safe-by-Design approaches [Internet]. Zenodo; 2022 Mar [cited 2023 Jul 23]. Available from: https://zenodo.org/record/6371471 Cite
1.
Zahornyi MM, Yavorovsky OP, Riabovol VM, Tyschenko NI, Lobunets TF, Tomila TV, et al. Morphological, spectral and toxicological features of new composite material of titanium nanodioxide with nanosilver for use in medicine and biology. Med perspekt [Internet]. 2022 Mar 30 [cited 2024 Apr 2];27(1):152–9. Available from: http://journals.uran.ua/index.php/2307-0404/article/view/254381 Cite
1.
Serrano BA, Pi IG, Bochon A, Nelson A, Puntes V, Pansera M, et al. SABYDOMA’s Workshop - A Stakeholder’s Perspective of Safe-and-Sustainable-by-Design (SSbD). 2022 Feb 18 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/6326436 Cite
1.
Tobin L. NanoSafety Cluster Newslettter #25 February 2022. 2022 Feb 8 [cited 2024 Jan 24]; Available from: https://zenodo.org/record/6004875 Cite
1.
Subbotina J, Lobaskin V. Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. J Phys Chem B [Internet]. 2022 Feb 8 [cited 2022 Feb 9];acs.jpcb.1c09525. Available from: https://pubs.acs.org/doi/10.1021/acs.jpcb.1c09525 Cite
1.
Ulla Vogel. HARMLESS Deliverable 2.1 - Overview of relevant AOPs to inform NAM choice of KEs. 2022 Jan 31 [cited 2024 Mar 15]; Available from: https://zenodo.org/doi/10.5281/zenodo.10556303 Cite
1.
Boyles M, Murphy F, Mueller W, Wohlleben W, Jacobsen NR, Braakhuis H, et al. Development of a standard operating procedure for the DCFH 2 -DA acellular assessment of reactive oxygen species produced by nanomaterials. Toxicology Mechanisms and Methods [Internet]. 2022 Jan 28 [cited 2022 Feb 24];1–14. Available from: https://www.tandfonline.com/doi/full/10.1080/15376516.2022.2029656 Cite
1.
Aguilar N, Barros R, Antonio Tamayo-Ramos J, Martel S, Bol A, Atilhan M, et al. Carbon nanomaterials with Thymol + Menthol Type V natural deep eutectic solvent: From surface properties to nano-Venturi effect through nanopores. Journal of Molecular Liquids [Internet]. 2022 [cited 2024 Apr 11];368:120637. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167732222021766 Cite
1.
Bannuscher A, Schmid O, Drasler B, Rohrbasser A, Braakhuis HM, Meldrum K, et al. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials. NanoImpact [Internet]. 2022 [cited 2024 Mar 15];28:100439. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074822000611 Cite
1.
Wyrzykowska E, Mikolajczyk A, Lynch I, Jeliazkova N, Kochev N, Sarimveis H, et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat Nanotechnol [Internet]. 2022 [cited 2024 Apr 21];17(9):924–32. Available from: https://www.nature.com/articles/s41565-022-01173-6 Cite
1.
Krans NA, Ammar A, Nymark P, Willighagen EL, Bakker MI, Quik JTK. FAIR assessment tools: evaluating use and performance. NanoImpact [Internet]. 2022 [cited 2022 May 14];27:100402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074822000246 Cite
1.
Krans NA, Ammar A, Nymark P, Willighagen EL, Bakker MI, Quik JTK. FAIR assessment tools: evaluating use and performance. NanoImpact [Internet]. 2022 [cited 2022 Jun 21];27:100402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074822000246 Cite
1.
Nederstigt TAP, Peijnenburg WJGM, Bleeker EAJ, Vijver MG. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight. Regulatory Toxicology and Pharmacology [Internet]. 2022 [cited 2022 Mar 22];131:105156. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0273230022000435 Cite
1.
Martinez DST, Ellis LJA, Da Silva GH, Petry R, Medeiros AMZ, Davoudi HH, et al. Daphnia magna and mixture toxicity with nanomaterials – Current status and perspectives in data-driven risk prediction. Nano Today [Internet]. 2022 [cited 2022 Feb 19];43:101430. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1748013222000573 Cite
1.
Jeliazkova N, Ma-Hock L, Janer G, Stratmann H, Wohlleben W. Possibilities to group nanomaterials across different substances – A case study on organic pigments. NanoImpact [Internet]. 2022 [cited 2022 Feb 24];100391. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074822000131 Cite
1.
Zhu H, Wu KJ, He CH. Ultrasound-assisted synthesis of visible-light-driven Ag/g-C3N4 catalysts in a continuous flow reactor. Chemical Engineering Journal [Internet]. 2022 [cited 2024 Apr 2];429:132412. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894721039905 Cite
1.
Trinh TX, Seo M, Yoon TH, Kim J. Developing random forest based QSAR models for predicting the mixture toxicity of TiO2 based nano-mixtures to Daphnia magna. NanoImpact [Internet]. 2022 [cited 2024 Apr 2];25:100383. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074822000052 Cite

1.
Ammar A. RDF version of the data from Anastasios G. et al. Computational enrichment of physicochemical data for the development of a zeta-potential read-across predictive model with Isalos Analytics Platform. NanoImpact (2021). [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from: https://zenodo.org/record/5744082 Cite
1.
Ammar A. RDF version of the data from Saarimaki et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials (Version 1.0.0) [Zebodo Dataset] (2020) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from: https://zenodo.org/record/5744003 Cite
1.
Ammar A. RDF version of the data from Hagar I. Labouta et al. Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature. NanoImpact (2019) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from: https://zenodo.org/record/5744302 Cite
1.
Ammar A. RDF version of the data from Anastasios G. Papadiamantis et al. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform (2020) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from: https://zenodo.org/record/5743788 Cite
1.
Robinson RLM, Sarimveis H, Doganis P, Jia X, Kotzabasaki M, Gousiadou C, et al. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. Beilstein J Nanotechnol [Internet]. 2021 Nov 29 [cited 2022 Jan 4];12:1297–325. Available from: https://www.beilstein-journals.org/bjnano/articles/12/97 Cite
1.
Martens M, Stierum R, Schymanski EL, Evelo CT, Aalizadeh R, Aladjov H, et al. ELIXIR and Toxicology: a community in development. F1000Res [Internet]. 2021 Nov 8 [cited 2024 Mar 15];10:1129. Available from: https://f1000research.com/articles/10-1129/v1 Cite
1.
Papadopoulou D, Drakopoulos A, Lagarias P, Melagraki G, Kollias G, Afantitis A. In Silico Identification and Evaluation of Natural Products as Potential Tumor Necrosis Factor Function Inhibitors Using Advanced Enalos Asclepios KNIME Nodes. IJMS [Internet]. 2021 Sep 23 [cited 2021 Sep 24];22(19):10220. Available from: https://www.mdpi.com/1422-0067/22/19/10220 Cite
1.
Zhu H, Wu KJ, He CH. Continuous Synthesis of Uniformly Dispersed Mesoporous SBA-15 Supported Silver Nanoparticles in a Coiled Flow Inverter Reactor. Front Chem [Internet]. 2021 Sep 22 [cited 2024 Apr 2];9:747105. Available from: https://www.frontiersin.org/articles/10.3389/fchem.2021.747105/full Cite
1.
Martel Martín S, Barros R, Domi B, Rumbo C, Poddighe M, Aparicio S, et al. Low Toxicological Impact of Commercial Pristine Multi-Walled Carbon Nanotubes on the Yeast Saccharomyces cerevisiae. Nanomaterials [Internet]. 2021 Sep 1 [cited 2024 Apr 11];11(9):2272. Available from: https://www.mdpi.com/2079-4991/11/9/2272 Cite
1.
Winckers LA, Evelo CT, Willighagen EL, Kutmon M. Investigating the Molecular Processes Behind the Cell-Specific Toxicity Response to Titanium Dioxide Nanobelts. IJMS [Internet]. 2021 Aug 30 [cited 2021 Aug 31];22(17):9432. Available from: https://www.mdpi.com/1422-0067/22/17/9432 Cite
1.
Hanspers K, Kutmon M, Coort SL, Digles D, Dupuis LJ, Ehrhart F, et al. Ten simple rules for creating reusable pathway models for computational analysis and visualization. PLOS Computational Biology [Internet]. 2021 Aug 19 [cited 2021 Aug 20];17(8):e1009226. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009226 Cite
1.
Larraz A, Ballesteros A, Igos E. DIAGONAL Deliverable 5.1: DIAGONAL SbD and SusbD implementation framework [Internet]. [object Object]; 2021 Jul [cited 2024 Apr 12]. Available from: https://zenodo.org/record/8142985 Cite
1.
Guo Z, Chakraborty S, Monikh FA, Varsou D, Chetwynd AJ, Afantitis A, et al. Surface Functionalization of Graphene‐Based Materials: Biological Behavior, Toxicology, and Safe‐By‐Design Aspects. Advanced Biology [Internet]. 2021 Jul 20 [cited 2021 Jul 22];2100637. Available from: https://onlinelibrary.wiley.com/doi/10.1002/adbi.202100637 Cite
1.
Tobin L. NanoSafety Cluster Newsletter issue 23. 2021 Jul 13 [cited 2024 Jan 24]; Available from: https://zenodo.org/record/5094676 Cite
1.
Ammar A. RDF version of the data from Choi, JS. et al. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources (2018) [Internet]. Zenodo; 2021 [cited 2021 Dec 1]. Available from: https://zenodo.org/record/5743204 Cite
1.
Zhang P, Guo Z, Monikh FA, Lynch I, Valsami-Jones E, Zhang Z. Growing Rice ( Oryza sativa ) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO 2 Nanoparticles. Environ Sci Technol [Internet]. 2021 Jul 6 [cited 2024 Apr 2];55(13):8654–64. Available from: https://pubs.acs.org/doi/10.1021/acs.est.0c08813 Cite
1.
Falk A. International Network Initiative on Safe and Sustainable Nanotechnologies (INISS-nano). 2021 Jun 21 [cited 2024 Mar 15]; Available from: https://zenodo.org/record/5004929 Cite
1.
Radnik, Jörg. BAM reference data: XPS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) [Internet]. Zenodo; 2021 [cited 2021 Oct 28]. Available from: https://zenodo.org/record/4986068 Cite
1.
Mays C, Hardy S, Melandri S, Resch S, Serrano BA. Cross cutting thematics of the Safe-by-Design NMBP-15 projects. 2021 May 5 [cited 2024 Apr 2]; Available from: https://zenodo.org/record/4750138 Cite
1.
Jeliazkova, Nina, Apostolova, Margarita D., Andreoli, Cristina, Barone, Flavia, Barrick, Andrew, Battistelli, Chiara, et al. NanoReg2 - eNanoMapper database [Internet]. Zenodo; 2021 [cited 2021 Oct 28]. Available from: https://zenodo.org/record/4713745 Cite
1.
Nelson A, Bochon A, Karim ME, Miettinen M, Trump B, Pi IG, et al. SABYDOMA’s 1st Legal Workshop on Safe-by-Design [Internet]. 2021 Feb 3 [cited 2024 Apr 2]. Available from: https://zenodo.org/record/4498192 Cite
1.
Martens M, Ammar A, Riutta A, Waagmeester A, Slenter DN, Hanspers K, et al. WikiPathways: connecting communities. Nucleic Acids Research [Internet]. 2021 Jan 8 [cited 2020 Nov 24];49(D1):D613–21. Available from: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1024/5992285 Cite
1.
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. Nanomaterials [Internet]. 2021 Jan 7 [cited 2024 Apr 2];11(1):124. Available from: https://www.mdpi.com/2079-4991/11/1/124 Cite
1.
Lynch I, Afantitis A, Greco D, Dusinska M, Banares MA, Melagraki G. Editorial for the Special Issue From Nanoinformatics to Nanomaterials Risk Assessment and Governance. Nanomaterials [Internet]. 2021 Jan 7 [cited 2021 Feb 12];11(1):121. Available from: https://www.mdpi.com/2079-4991/11/1/121 Cite
1.
Ruggiero E, Santizo KY, Persson M, Delpivo C, Wohlleben W. Food contact of paper and plastic products containing SiO2, Cu-Phthalocyanine, Fe2O3, CaCO3: Ranking factors that control the similarity of form and rate of release. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];100372. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074821000811 Cite
1.
Loosli F, Rasmussen K, Rauscher H, Cross RK, Bossa N, Peijnenburg W, et al. Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];100375. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074821000847 Cite
1.
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, et al. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data [Internet]. 2021 [cited 2021 Feb 12];8(1):49. Available from: http://www.nature.com/articles/s41597-021-00808-y Cite
1.
Bossa C, Andreoli C, Bakker M, Barone F, De Angelis I, Jeliazkova N, et al. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data. Computational Toxicology [Internet]. 2021 [cited 2021 Oct 28];20:100190. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468111321000384 Cite
1.
Basei G, Zabeo A, Rasmussen K, Tsiliki G, Hristozov D. A Weight of Evidence approach to classify nanomaterials according to the EU Classification, Labelling and Packaging Regulation criteria. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];24:100359. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074821000689 Cite
1.
Varsou DD, Ellis LJA, Afantitis A, Melagraki G, Lynch I. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna. Chemosphere [Internet]. 2021 [cited 2021 Jul 9];131452. Available from: https://linkinghub.elsevier.com/retrieve/pii/S004565352101924X Cite
1.
William N, Bamidoro F, Beales PA, Drummond-Brydson R, Hondow N, Key S, et al. Tuning stable noble metal nanoparticles dispersions to moderate their interaction with model membranes. Journal of Colloid and Interface Science [Internet]. 2021 [cited 2024 Apr 2];594:101–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979721002964 Cite
1.
Keller JG, Persson M, Müller P, Ma-Hock L, Werle K, Arts J, et al. Variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity. NanoImpact [Internet]. 2021 [cited 2021 Dec 14];23:100341. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074821000501 Cite
1.
Jeliazkova N, Apostolova MD, Andreoli C, Barone F, Barrick A, Battistelli C, et al. Towards FAIR nanosafety data. Nat Nanotechnol [Internet]. 2021 [cited 2024 Apr 2];16(6):644–54. Available from: https://www.nature.com/articles/s41565-021-00911-6 Cite
1.
Liang J, Gao X, Guo B, Ding Y, Yan J, Guo Z, et al. Ferrocene‐Based Metal–Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angew Chem Int Ed [Internet]. 2021 [cited 2024 Apr 2];60(23):12770–4. Available from: https://onlinelibrary.wiley.com/doi/10.1002/anie.202101878 Cite
1.
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, et al. Environmental dimensions of the protein corona. Nat Nanotechnol [Internet]. 2021 [cited 2021 Jun 12];16(6):617–29. Available from: http://www.nature.com/articles/s41565-021-00924-1 Cite
1.
Yang M, Gao Y, Liu Y, Yang G, Zhao CX, Wu KJ. Integration of microfluidic systems with external fields for multiphase process intensification. Chemical Engineering Science [Internet]. 2021 [cited 2024 Apr 2];234:116450. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009250921000154 Cite
1.
Papadiamantis AG, Afantitis A, Tsoumanis A, Valsami-Jones E, Lynch I, Melagraki G. Computational enrichment of physicochemical data for the development of a ζ-potential read-across predictive model with Isalos Analytics Platform. NanoImpact [Internet]. 2021 [cited 2021 Mar 31];22:100308. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452074821000173 Cite
1.
Brinkmann BW, Beijk WF, Vlieg RC, van Noort SJT, Mejia J, Colaux JL, et al. Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. Aquatic Toxicology [Internet]. 2021 [cited 2022 Mar 22];232:105744. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166445X21000035 Cite
1.
Bailey T, Pinto M, Hondow N, Wu KJ. Continuous microfluidic synthesis of zirconium-based UiO-67 using a coiled flow invertor reactor. MethodsX [Internet]. 2021 [cited 2024 Apr 2];8:101246. Available from: https://linkinghub.elsevier.com/retrieve/pii/S221501612100039X Cite
1.
Rouse I, Power D, Brandt EG, Schneemilch M, Kotsis K, Quirke N, et al. First principles characterisation of bio–nano interface. Phys Chem Chem Phys [Internet]. 2021 [cited 2021 Jun 10];10.1039.D1CP01116B. Available from: http://xlink.rsc.org/?DOI=D1CP01116B Cite
1.
Murugadoss S. A strategy towards the generation of testable adverse outcome pathways for nanomaterials. ALTEX [Internet]. 2021 [cited 2021 May 20]; Available from: https://www.altex.org/index.php/altex/article/view/2263/version/2323 Cite